Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 May;5(5):862–873. doi: 10.1002/pro.5560050508

Extremely thermostable L(+)-lactate dehydrogenase from Thermotoga maritima: cloning, characterization, and crystallization of the recombinant enzyme in its tetrameric and octameric state.

R Ostendorp 1, G Auerbach 1, R Jaenicke 1
PMCID: PMC2143418  PMID: 8732758

Abstract

L(+)-lactate dehydrogenase (LDH; E.C.1.1.1.27) from the hyperthermophilic bacterium Thermotoga maritima has been shown to represent the most stable LDH isolated so far (Wrba A, Jaenicke R, Huber R, Stetter KO, 1990, Eur J Biochem 188:195-201). In order to obtain the enzyme in amounts sufficient for physical characterization, and to analyze the molecular basis of its intrinsic stability, the gene was cloned and expressed functionally in Escherichia coli. Growth of the cells and purification of the enzyme were performed aerobically at 26 degrees C, i.e., ca. 60 degrees below the optimal growth temperature of Thermotoga. Two enzyme species with LDH activity were purified to homogeneity. Crystals of the enzyme obtained at 4 degrees C show satisfactory diffraction suitable for X-ray analysis up to a resolution of 2.8 A. As shown by gel-permeation chromatography, chemical crosslinking, light scattering, analytical ultracentrifugation, and electron microscopy, the two LDH species represent homotetramers and homooctamers (i.e., dimers of tetramers), with a common subunit molecular mass of 35 kDa. The spectroscopic characteristics (UV absorption, fluorescence emission, near- and far-UV CD) of the two species are indistinguishable. The calculated alpha-helix content is 45%, in accordance with the result of homology modeling. Compared to the tetrameric enzyme, the octamer exhibits reduced specific activity, whereas KM is unalatered. The extreme intrinsic stability of the protein is reflected by its unaltered catalytic activity over 4 h at 85 degrees C; irreversible thermal denaturation becomes significant at approximately 95 degrees C. The anomalous resistance toward chemical denaturation using guanidinium chloride and urea confirms this observation. Both the high optimal temperature and the pH optimum of the catalytic activity correspond to the growth conditions of T. maritima in its natural habitat.

Full Text

The Full Text of this article is available as a PDF (4.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abad-Zapatero C., Griffith J. P., Sussman J. L., Rossmann M. G. Refined crystal structure of dogfish M4 apo-lactate dehydrogenase. J Mol Biol. 1987 Dec 5;198(3):445–467. doi: 10.1016/0022-2836(87)90293-2. [DOI] [PubMed] [Google Scholar]
  2. Böhm G., Jaenicke R. Correlation functions as a tool for protein modeling and structure analysis. Protein Sci. 1992 Oct;1(10):1269–1278. doi: 10.1002/pro.5560011005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
  4. Clarke A. R., Atkinson T., Holbrook J. J. From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part II. Trends Biochem Sci. 1989 Apr;14(4):145–148. doi: 10.1016/0968-0004(89)90147-3. [DOI] [PubMed] [Google Scholar]
  5. Dayhoff M. O., Barker W. C., Hunt L. T. Establishing homologies in protein sequences. Methods Enzymol. 1983;91:524–545. doi: 10.1016/s0076-6879(83)91049-2. [DOI] [PubMed] [Google Scholar]
  6. Durchschlag H., Jaenicke R. Partial specific volume changes of proteins densimetric studies. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1074–1079. doi: 10.1016/0006-291x(82)92109-x. [DOI] [PubMed] [Google Scholar]
  7. Eisenberg H., Josephs R., Reisler E. Bovine liver glutamate dehydrogenase. Adv Protein Chem. 1976;30:101–181. doi: 10.1016/s0065-3233(08)60479-9. [DOI] [PubMed] [Google Scholar]
  8. Garvie E. I. Bacterial lactate dehydrogenases. Microbiol Rev. 1980 Mar;44(1):106–139. doi: 10.1128/mr.44.1.106-139.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hermann R., Jaenicke R., Rudolph R. Analysis of the reconstitution of oligomeric enzymes by cross-linking with glutaraldehyde: kinetics of reassociation of lactic dehydrogenase. Biochemistry. 1981 Sep 1;20(18):5195–5201. doi: 10.1021/bi00521a015. [DOI] [PubMed] [Google Scholar]
  10. Hilbert M., Böhm G., Jaenicke R. Structural relationships of homologous proteins as a fundamental principle in homology modeling. Proteins. 1993 Oct;17(2):138–151. doi: 10.1002/prot.340170204. [DOI] [PubMed] [Google Scholar]
  11. Iwata S., Kamata K., Yoshida S., Minowa T., Ohta T. T and R states in the crystals of bacterial L-lactate dehydrogenase reveal the mechanism for allosteric control. Nat Struct Biol. 1994 Mar;1(3):176–185. doi: 10.1038/nsb0394-176. [DOI] [PubMed] [Google Scholar]
  12. Iwata S., Ohta T. Molecular basis of allosteric activation of bacterial L-lactate dehydrogenase. J Mol Biol. 1993 Mar 5;230(1):21–27. doi: 10.1006/jmbi.1993.1122. [DOI] [PubMed] [Google Scholar]
  13. Jaenicke R. Enzymes under extremes of physical conditions. Annu Rev Biophys Bioeng. 1981;10:1–67. doi: 10.1146/annurev.bb.10.060181.000245. [DOI] [PubMed] [Google Scholar]
  14. Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991 Dec 18;202(3):715–728. doi: 10.1111/j.1432-1033.1991.tb16426.x. [DOI] [PubMed] [Google Scholar]
  15. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  16. Kallwass H. K., Surewicz W. K., Parris W., Macfarlane E. L., Luyten M. A., Kay C. M., Gold M., Jones J. B. Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase. Protein Eng. 1992 Dec;5(8):769–774. doi: 10.1093/protein/5.8.769. [DOI] [PubMed] [Google Scholar]
  17. Korndörfer I., Steipe B., Huber R., Tomschy A., Jaenicke R. The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 A resolution. J Mol Biol. 1995 Mar 3;246(4):511–521. doi: 10.1006/jmbi.1994.0103. [DOI] [PubMed] [Google Scholar]
  18. Kotik M., Zuber H. Evidence for temperature-dependent conformational changes in the L-lactate dehydrogenase from Bacillus stearothermophilus. Biochemistry. 1992 Sep 1;31(34):7787–7795. doi: 10.1021/bi00149a007. [DOI] [PubMed] [Google Scholar]
  19. Kotik M., Zuber H. Mutations that significantly change the stability, flexibility and quaternary structure of the l-lactate dehydrogenase from Bacillus megaterium. Eur J Biochem. 1993 Jan 15;211(1-2):267–280. doi: 10.1111/j.1432-1033.1993.tb19895.x. [DOI] [PubMed] [Google Scholar]
  20. Leibrock E., Bayer P., Lüdemann H. D. Nonenzymatic hydrolysis of adenosinetriphosphate (ATP) at high temperatures and high pressures. Biophys Chem. 1995 Apr;54(2):175–180. doi: 10.1016/0301-4622(94)00134-6. [DOI] [PubMed] [Google Scholar]
  21. Menéndez-Arias L., Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J Mol Biol. 1989 Mar 20;206(2):397–406. doi: 10.1016/0022-2836(89)90488-9. [DOI] [PubMed] [Google Scholar]
  22. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  23. Nojima H., Noda H. Kietics of thermal unfolding and refolding of thermostable phosphoglycerate kinase. J Biochem. 1979 Oct;86(4):1055–1065. doi: 10.1093/oxfordjournals.jbchem.a132600. [DOI] [PubMed] [Google Scholar]
  24. Ostendorp R., Liebl W., Schurig H., Jaenicke R. The L-lactate dehydrogenase gene of the hyperthermophilic bacterium Thermotoga maritima cloned by complementation in Escherichia coli. Eur J Biochem. 1993 Sep 15;216(3):709–715. doi: 10.1111/j.1432-1033.1993.tb18190.x. [DOI] [PubMed] [Google Scholar]
  25. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  26. Perutz M. F., Raidt H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature. 1975 May 15;255(5505):256–259. doi: 10.1038/255256a0. [DOI] [PubMed] [Google Scholar]
  27. Ravot G., Magot M., Fardeau M. L., Patel B. K., Prensier G., Egan A., Garcia J. L., Ollivier B. Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol. 1995 Apr;45(2):308–314. doi: 10.1099/00207713-45-2-308. [DOI] [PubMed] [Google Scholar]
  28. Rehaber V., Jaenicke R. Stability and reconstitution of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima. J Biol Chem. 1992 Jun 5;267(16):10999–11006. [PubMed] [Google Scholar]
  29. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  30. Rudolph R., Jaenicke R. Kinetics of reassociation and reactivation of pig-muscle lactic dehydrogenase after acid dissociation. Eur J Biochem. 1976 Apr 1;63(2):409–417. doi: 10.1111/j.1432-1033.1976.tb10242.x. [DOI] [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schurig H., Rutkat K., Rachel R., Jaenicke R. Octameric enolase from the hyperthermophilic bacterium Thermotoga maritima: purification, characterization, and image processing. Protein Sci. 1995 Feb;4(2):228–236. doi: 10.1002/pro.5560040209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Skerra A., Pfitzinger I., Plückthun A. The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Biotechnology (N Y) 1991 Mar;9(3):273–278. doi: 10.1038/nbt0391-273. [DOI] [PubMed] [Google Scholar]
  34. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  35. Taylor W. R. Pattern matching methods in protein sequence comparison and structure prediction. Protein Eng. 1988 Jul;2(2):77–86. doi: 10.1093/protein/2.2.77. [DOI] [PubMed] [Google Scholar]
  36. Tomschy A., Glockshuber R., Jaenicke R. Functional expression of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima in Escherichia coli. Authenticity and kinetic properties of the recombinant enzyme. Eur J Biochem. 1993 May 15;214(1):43–50. doi: 10.1111/j.1432-1033.1993.tb17894.x. [DOI] [PubMed] [Google Scholar]
  37. Wigley D. B., Clarke A. R., Dunn C. R., Barstow D. A., Atkinson T., Chia W. N., Muirhead H., Holbrook J. J. The engineering of a more thermally stable lactate dehydrogenase by reduction of the area of a water-accessible hydrophobic surface. Biochim Biophys Acta. 1987 Nov 5;916(1):145–148. doi: 10.1016/0167-4838(87)90221-4. [DOI] [PubMed] [Google Scholar]
  38. Wigley D. B., Gamblin S. J., Turkenburg J. P., Dodson E. J., Piontek K., Muirhead H., Holbrook J. J. Structure of a ternary complex of an allosteric lactate dehydrogenase from Bacillus stearothermophilus at 2.5 A resolution. J Mol Biol. 1992 Jan 5;223(1):317–335. doi: 10.1016/0022-2836(92)90733-z. [DOI] [PubMed] [Google Scholar]
  39. Wrba A., Jaenicke R., Huber R., Stetter K. O. Lactate dehydrogenase from the extreme thermophile Thermotoga maritima. Eur J Biochem. 1990 Feb 22;188(1):195–201. doi: 10.1111/j.1432-1033.1990.tb15388.x. [DOI] [PubMed] [Google Scholar]
  40. Wrba A., Schweiger A., Schultes V., Jaenicke R., Závodszky P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry. 1990 Aug 21;29(33):7584–7592. doi: 10.1021/bi00485a007. [DOI] [PubMed] [Google Scholar]
  41. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  42. Zettlmeissl G., Rudolph R., Jaenicke R. Rate-determining folding and association reactions on the reconstitution pathway of porcine skeletal muscle lactic dehydrogenase after denaturation by guanidine hydrochloride. Biochemistry. 1982 Aug 17;21(17):3946–3950. doi: 10.1021/bi00260a007. [DOI] [PubMed] [Google Scholar]
  43. Zuber H. Temperature adaptation of lactate dehydrogenase. Structural, functional and genetic aspects. Biophys Chem. 1988 Feb;29(1-2):171–179. doi: 10.1016/0301-4622(88)87037-6. [DOI] [PubMed] [Google Scholar]
  44. Zülli F., Schneiter R., Urfer R., Zuber H. Structure and function of L-lactate dehydrogenases from thermophilic and mesophilic bacteria, XI. Engineering thermostability and activity of lactate dehydrogenases from bacilli. Biol Chem Hoppe Seyler. 1991 May;372(5):363–372. doi: 10.1515/bchm3.1991.372.1.363. [DOI] [PubMed] [Google Scholar]
  45. Zülli F., Weber H., Zuber H. Structure and function of L-lactate dehydrogenases from thermophilic and mesophilic bacteria, X. Analysis of structural elements responsible for the differences in thermostability and activation by fructose 1,6-bisphosphate in the lactate dehydrogenases from B. stearothermophilus and B. caldolyticus by protein engineering. Biol Chem Hoppe Seyler. 1990 Aug;371(8):655–662. doi: 10.1515/bchm3.1990.371.2.655. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES