Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 May;5(5):852–856. doi: 10.1002/pro.5560050506

Purification and characterization of dihydroorotate dehydrogenase A from Lactococcus lactis, crystallization and preliminary X-ray diffraction studies of the enzyme.

F S Nielsen 1, P Rowland 1, S Larsen 1, K F Jensen 1
PMCID: PMC2143419  PMID: 8732756

Abstract

Lactococcus lactis is the only organism known to contain two dihydroorotate dehydrogenases, i.e., the A- and B-forms. In this paper, we report the overproduction, purification, and crystallization of dihydroorotate dehydrogenase A. In solution, the enzyme is bright yellow. It is a dimer of subunits (34 kDa) that contain one molecule of flavin mononucleotide each. The enzyme shows optimal function in the pH range 7.5-9.0. It is specific for L-dihydroorotate as substrate and can use dichlorophenolindophenol, potassium hexacyanoferrate (III), and, to a lower extent, also molecular oxygen as acceptors of the reducing equivalents, whereas the pyridine nucleotide coenzymes (NAD+, NADP+) and the respiratory quinones (i.e., vitamins Q6, Q10 and K2) were inactive. The enzyme has been crystallized from solutions of 30% polyethylene glycol, 0.2 M sodium acetate, and 0.1 M Tris-HCl, pH 8.5. The resulting yellow crystals diffracted well and showed little sign of radiation damage during diffraction experiments. The crystals are monoclinic, space group P21 with unit cell dimensions a = 54.19 A, b = 109.23 A, c = 67.17 A, and beta = 104.5 degrees. A native data set has been collected with a completeness of 99.3% to 2.0 A and an Rsym value of 5.2%. Analysis of the solvent content and the self-rotation function indicates that the two subunits in the asymmetric unit are related by a noncrystallographic twofold axis perpendicular to the crystallographic b and c axes.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen P. S., Jansen P. J., Hammer K. Two different dihydroorotate dehydrogenases in Lactococcus lactis. J Bacteriol. 1994 Jul;176(13):3975–3982. doi: 10.1128/jb.176.13.3975-3982.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angermüller S., Löffler M. Localization of dihydroorotate oxidase in myocardium and kidney cortex of the rat. An electron microscopic study using the cerium technique. Histochem Cell Biol. 1995 Apr;103(4):287–292. doi: 10.1007/BF01457413. [DOI] [PubMed] [Google Scholar]
  3. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  4. DeFrees S. A., Sawick D. P., Cunningham B., Heinstein P. F., Morré D. J., Cassady J. M. Structure-activity relationships of pyrimidines as dihydroorotate dehydrogenase inhibitors. Biochem Pharmacol. 1988 Oct 15;37(20):3807–3816. doi: 10.1016/0006-2952(88)90060-3. [DOI] [PubMed] [Google Scholar]
  5. Delihas N., Fox G. E. Origins of the plant chloroplasts and mitochondria based on comparisons of 5S ribosomal RNAs. Ann N Y Acad Sci. 1987;503:92–102. doi: 10.1111/j.1749-6632.1987.tb40601.x. [DOI] [PubMed] [Google Scholar]
  6. Ghim S. Y., Nielsen P., Neuhard J. Molecular characterization of pyrimidine biosynthesis genes from the thermophile Bacillus caldolyticus. Microbiology. 1994 Mar;140(Pt 3):479–491. doi: 10.1099/00221287-140-3-479. [DOI] [PubMed] [Google Scholar]
  7. Hines V., Johnston M. Analysis of the kinetic mechanism of the bovine liver mitochondrial dihydroorotate dehydrogenase. Biochemistry. 1989 Feb 7;28(3):1222–1226. doi: 10.1021/bi00429a040. [DOI] [PubMed] [Google Scholar]
  8. Hines V., Keys L. D., 3rd, Johnston M. Purification and properties of the bovine liver mitochondrial dihydroorotate dehydrogenase. J Biol Chem. 1986 Aug 25;261(24):11386–11392. [PubMed] [Google Scholar]
  9. Karibian D. Dihydroorotate dehydrogenase (Escherichia coli). Methods Enzymol. 1978;51:58–63. doi: 10.1016/s0076-6879(78)51010-0. [DOI] [PubMed] [Google Scholar]
  10. Larsen J. N., Jensen K. F. Nucleotide sequence of the pyrD gene of Escherichia coli and characterization of the flavoprotein dihydroorotate dehydrogenase. Eur J Biochem. 1985 Aug 15;151(1):59–65. doi: 10.1111/j.1432-1033.1985.tb09068.x. [DOI] [PubMed] [Google Scholar]
  11. Lu Z. H., Zhang R., Diasio R. B. Purification and characterization of dihydropyrimidine dehydrogenase from human liver. J Biol Chem. 1992 Aug 25;267(24):17102–17109. [PubMed] [Google Scholar]
  12. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  13. Nagy M., Lacroute F., Thomas D. Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8966–8970. doi: 10.1073/pnas.89.19.8966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yokota H., Fernandez-Salguero P., Furuya H., Lin K., McBride O. W., Podschun B., Schnackerz K. D., Gonzalez F. J. cDNA cloning and chromosome mapping of human dihydropyrimidine dehydrogenase, an enzyme associated with 5-fluorouracil toxicity and congenital thymine uraciluria. J Biol Chem. 1994 Sep 16;269(37):23192–23196. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES