Abstract
Lactococcus lactis is the only organism known to contain two dihydroorotate dehydrogenases, i.e., the A- and B-forms. In this paper, we report the overproduction, purification, and crystallization of dihydroorotate dehydrogenase A. In solution, the enzyme is bright yellow. It is a dimer of subunits (34 kDa) that contain one molecule of flavin mononucleotide each. The enzyme shows optimal function in the pH range 7.5-9.0. It is specific for L-dihydroorotate as substrate and can use dichlorophenolindophenol, potassium hexacyanoferrate (III), and, to a lower extent, also molecular oxygen as acceptors of the reducing equivalents, whereas the pyridine nucleotide coenzymes (NAD+, NADP+) and the respiratory quinones (i.e., vitamins Q6, Q10 and K2) were inactive. The enzyme has been crystallized from solutions of 30% polyethylene glycol, 0.2 M sodium acetate, and 0.1 M Tris-HCl, pH 8.5. The resulting yellow crystals diffracted well and showed little sign of radiation damage during diffraction experiments. The crystals are monoclinic, space group P21 with unit cell dimensions a = 54.19 A, b = 109.23 A, c = 67.17 A, and beta = 104.5 degrees. A native data set has been collected with a completeness of 99.3% to 2.0 A and an Rsym value of 5.2%. Analysis of the solvent content and the self-rotation function indicates that the two subunits in the asymmetric unit are related by a noncrystallographic twofold axis perpendicular to the crystallographic b and c axes.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen P. S., Jansen P. J., Hammer K. Two different dihydroorotate dehydrogenases in Lactococcus lactis. J Bacteriol. 1994 Jul;176(13):3975–3982. doi: 10.1128/jb.176.13.3975-3982.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Angermüller S., Löffler M. Localization of dihydroorotate oxidase in myocardium and kidney cortex of the rat. An electron microscopic study using the cerium technique. Histochem Cell Biol. 1995 Apr;103(4):287–292. doi: 10.1007/BF01457413. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
- DeFrees S. A., Sawick D. P., Cunningham B., Heinstein P. F., Morré D. J., Cassady J. M. Structure-activity relationships of pyrimidines as dihydroorotate dehydrogenase inhibitors. Biochem Pharmacol. 1988 Oct 15;37(20):3807–3816. doi: 10.1016/0006-2952(88)90060-3. [DOI] [PubMed] [Google Scholar]
- Delihas N., Fox G. E. Origins of the plant chloroplasts and mitochondria based on comparisons of 5S ribosomal RNAs. Ann N Y Acad Sci. 1987;503:92–102. doi: 10.1111/j.1749-6632.1987.tb40601.x. [DOI] [PubMed] [Google Scholar]
- Ghim S. Y., Nielsen P., Neuhard J. Molecular characterization of pyrimidine biosynthesis genes from the thermophile Bacillus caldolyticus. Microbiology. 1994 Mar;140(Pt 3):479–491. doi: 10.1099/00221287-140-3-479. [DOI] [PubMed] [Google Scholar]
- Hines V., Johnston M. Analysis of the kinetic mechanism of the bovine liver mitochondrial dihydroorotate dehydrogenase. Biochemistry. 1989 Feb 7;28(3):1222–1226. doi: 10.1021/bi00429a040. [DOI] [PubMed] [Google Scholar]
- Hines V., Keys L. D., 3rd, Johnston M. Purification and properties of the bovine liver mitochondrial dihydroorotate dehydrogenase. J Biol Chem. 1986 Aug 25;261(24):11386–11392. [PubMed] [Google Scholar]
- Karibian D. Dihydroorotate dehydrogenase (Escherichia coli). Methods Enzymol. 1978;51:58–63. doi: 10.1016/s0076-6879(78)51010-0. [DOI] [PubMed] [Google Scholar]
- Larsen J. N., Jensen K. F. Nucleotide sequence of the pyrD gene of Escherichia coli and characterization of the flavoprotein dihydroorotate dehydrogenase. Eur J Biochem. 1985 Aug 15;151(1):59–65. doi: 10.1111/j.1432-1033.1985.tb09068.x. [DOI] [PubMed] [Google Scholar]
- Lu Z. H., Zhang R., Diasio R. B. Purification and characterization of dihydropyrimidine dehydrogenase from human liver. J Biol Chem. 1992 Aug 25;267(24):17102–17109. [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- Nagy M., Lacroute F., Thomas D. Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8966–8970. doi: 10.1073/pnas.89.19.8966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokota H., Fernandez-Salguero P., Furuya H., Lin K., McBride O. W., Podschun B., Schnackerz K. D., Gonzalez F. J. cDNA cloning and chromosome mapping of human dihydropyrimidine dehydrogenase, an enzyme associated with 5-fluorouracil toxicity and congenital thymine uraciluria. J Biol Chem. 1994 Sep 16;269(37):23192–23196. [PubMed] [Google Scholar]