Abstract
A 4.3-kDa variant of Type I antifreeze protein (AFP9) was purified from winter flounder serum by size exclusion chromatography and reversed-phase HPLC. By the criteria of mass, amino acid composition, and N-terminal sequences of tryptic peptides, this variant is the posttranslationally modified product of the previously characterized AFP gene 21a. It has 52 amino acids and contains four 11-amino acid repeats, one more than the major serum AFP components. The larger protein is completely alpha-helical at 0 degree C, with a melting temperature of 18 degrees C. It is considerably more active as an antifreeze than the three-repeat winter flounder AFP and the four-repeat yellowtail flounder AFP, both on a molar and a mg/mL basis. Several structural features of the four-repeat winter flounder AFP, including its larger size, additional ice-binding residues, and differences in ice-binding motifs might contribute to its greater activity. Its abundance in flounder serum, together with its potency as an antifreeze, suggest that AFP9 makes a significant contribution to the overall freezing point depression of the host.
Full Text
The Full Text of this article is available as a PDF (594.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ananthanarayanan V. S., Hew C. L. Structural studies on the freezing-point-depressing protein of the winter flounder Pseudopleuronectes americanus. Biochem Biophys Res Commun. 1977 Jan 24;74(2):685–689. doi: 10.1016/0006-291x(77)90357-6. [DOI] [PubMed] [Google Scholar]
- Bodkin M. J., Goodfellow J. M. Competing interactions contributing to alpha-helical stability in aqueous solution. Protein Sci. 1995 Apr;4(4):603–612. doi: 10.1002/pro.5560040402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabartty A., Hew C. L. The effect of enhanced alpha-helicity on the activity of a winter flounder antifreeze polypeptide. Eur J Biochem. 1991 Dec 18;202(3):1057–1063. doi: 10.1111/j.1432-1033.1991.tb16470.x. [DOI] [PubMed] [Google Scholar]
- Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
- Chou K. C. Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol. 1992 Jan 20;223(2):509–517. doi: 10.1016/0022-2836(92)90666-8. [DOI] [PubMed] [Google Scholar]
- Davies P. L. Conservation of antifreeze protein-encoding genes in tandem repeats. Gene. 1992 Mar 15;112(2):163–170. doi: 10.1016/0378-1119(92)90372-v. [DOI] [PubMed] [Google Scholar]
- Davies P. L., Hew C. L. Biochemistry of fish antifreeze proteins. FASEB J. 1990 May;4(8):2460–2468. doi: 10.1096/fasebj.4.8.2185972. [DOI] [PubMed] [Google Scholar]
- Davies P. L., Hough C., Scott G. K., Ng N., White B. N., Hew C. L. Antifreeze protein genes of the winter flounder. J Biol Chem. 1984 Jul 25;259(14):9241–9247. [PubMed] [Google Scholar]
- Devries A. L., Lin Y. Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochim Biophys Acta. 1977 Dec 20;495(2):388–392. doi: 10.1016/0005-2795(77)90395-6. [DOI] [PubMed] [Google Scholar]
- Gauthier S., Wu Y. L., Davies P. L. Nucleotide sequence of a variant antifreeze protein gene. Nucleic Acids Res. 1990 Sep 11;18(17):5303–5303. doi: 10.1093/nar/18.17.5303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gourlie B., Lin Y., Price J., DeVries A. L., Powers D., Huang R. C. Winter flounder antifreeze proteins: a multigene family. J Biol Chem. 1984 Dec 10;259(23):14960–14965. [PubMed] [Google Scholar]
- Hew C. L., Wang N. C., Yan S., Cai H., Sclater A., Fletcher G. L. Biosynthesis of antifreeze polypeptides in the winter flounder. Characterization and seasonal occurrence of precursor polypeptides. Eur J Biochem. 1986 Oct 15;160(2):267–272. doi: 10.1111/j.1432-1033.1986.tb09966.x. [DOI] [PubMed] [Google Scholar]
- Knight C. A., Cheng C. C., DeVries A. L. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys J. 1991 Feb;59(2):409–418. doi: 10.1016/S0006-3495(91)82234-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight C. A., Driggers E., DeVries A. L. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys J. 1993 Jan;64(1):252–259. doi: 10.1016/S0006-3495(93)81361-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulvihill D. M., Geoghegan K. F., Yeh Y., DeRemer K., Osuga D. T., Ward F. C., Feeney R. E. Antifreeze glycoproteins from Polar fish. Effects of freezing conditions on cooperative function. J Biol Chem. 1980 Jan 25;255(2):659–662. [PubMed] [Google Scholar]
- Presta L. G., Rose G. D. Helix signals in proteins. Science. 1988 Jun 17;240(4859):1632–1641. doi: 10.1126/science.2837824. [DOI] [PubMed] [Google Scholar]
- Raymond J. A., DeVries A. L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2589–2593. doi: 10.1073/pnas.74.6.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymond J. A., Radding W., DeVries A. L. Circular dichroism of protein and glycoprotein fish antifreezes. Biopolymers. 1977 Nov;16(11):2575–2578. doi: 10.1002/bip.1977.360161119. [DOI] [PubMed] [Google Scholar]
- Scott G. K., Davies P. L., Shears M. A., Fletcher G. L. Structural variations in the alanine-rich antifreeze proteins of the pleuronectinae. Eur J Biochem. 1987 Nov 2;168(3):629–633. doi: 10.1111/j.1432-1033.1987.tb13462.x. [DOI] [PubMed] [Google Scholar]
- Scott G. K., Hew C. L., Davies P. L. Antifreeze protein genes are tandemly linked and clustered in the genome of the winter flounder. Proc Natl Acad Sci U S A. 1985 May;82(9):2613–2617. doi: 10.1073/pnas.82.9.2613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sicheri F., Yang D. S. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature. 1995 Jun 1;375(6530):427–431. doi: 10.1038/375427a0. [DOI] [PubMed] [Google Scholar]
- Warren G. J., Hague C. M., Corotto L. V., Mueller G. M. Properties of engineered antifreeze peptides. FEBS Lett. 1993 Apr 26;321(2-3):116–120. doi: 10.1016/0014-5793(93)80090-h. [DOI] [PubMed] [Google Scholar]
- Wen D., Laursen R. A. A model for binding of an antifreeze polypeptide to ice. Biophys J. 1992 Dec;63(6):1659–1662. doi: 10.1016/S0006-3495(92)81750-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wen D., Laursen R. A. Structure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids. J Biol Chem. 1992 Jul 15;267(20):14102–14108. [PubMed] [Google Scholar]
- Yang D. S., Sax M., Chakrabartty A., Hew C. L. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature. 1988 May 19;333(6170):232–237. doi: 10.1038/333232a0. [DOI] [PubMed] [Google Scholar]