Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Jun;5(6):1014–1025. doi: 10.1002/pro.5560050604

An unusual route to thermostability disclosed by the comparison of Thermus thermophilus and Escherichia coli inorganic pyrophosphatases.

T Salminen 1, A Teplyakov 1, J Kankare 1, B S Cooperman 1, R Lahti 1, A Goldman 1
PMCID: PMC2143442  PMID: 8762133

Abstract

The structures of Escherichia coli soluble inorganic pyrophosphatase (E-PPase) and Thermus thermophilus soluble inorganic pyrophosphatase (T-PPase) have been compared to find the basis for the superior thermostability of T-PPase. Both enzymes are D3 hexamers and crystallize in the same space group with very similar cell dimensions. Two rather small changes occur in the T-PPase monomer: a systematic removal of Ser residues and insertion of Arg residues, but only in the C-terminal part of the protein, and more long-range ion pairs from the C-terminal helix to the rest of the molecule. Apart from the first five residues, the three-dimensional structures of E-PPase and T-PPase monomers are very similar. The one striking difference, however, is in the oligomeric interactions. In comparison with an E-PPase monomer, each T-PPase monomer is skewed by about 1 A in the xy plane, is 0.3 A closer to the center of the hexamer in the z direction, and is rotated by approximately 7 degrees about its center of gravity. Consequently, there are a number of additional hydrogen bond and ionic interactions, many of which form an interlocking network that covers all of the oligomeric surfaces. The change can also be seen in local distortions of three small loops involved in the oligomeric interfaces. The complex rigid-body motion has the effect that the hexamer is more tightly packed in T-PPase: the amount of surface area buried upon oligomerization increases by 16%. The change is sufficiently large to account for all of the increased thermostability of T-PPase over E-PPase and further supports the idea that bacterial PPases, most active as hexamers or tetramers, achieve a large measure of their stabilization through oligomerization. Rigid-body motions of entire monomers to produce tighter oligomers may be yet another way in which proteins can be made thermophilic.

Full Text

The Full Text of this article is available as a PDF (12.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P., Rossman M. G., Grau U. M., Zuber H., Frank G., Tratschin J. D. Thermal stability and protein structure. Biochemistry. 1979 Dec 11;18(25):5698–5703. doi: 10.1021/bi00592a028. [DOI] [PubMed] [Google Scholar]
  2. Barlow D. J., Thornton J. M. Ion-pairs in proteins. J Mol Biol. 1983 Aug 25;168(4):867–885. doi: 10.1016/s0022-2836(83)80079-5. [DOI] [PubMed] [Google Scholar]
  3. Baykov A. A., Dudarenkov V. Y., Käpylä J., Salminen T., Hyytiä T., Kasho V. N., Husgafvel S., Cooperman B. S., Goldman A., Lahti R. Dissociation of hexameric Escherichia coli inorganic pyrophosphatase into trimers on His-136-->Gln or His-140-->Gln substitution and its effect on enzyme catalytic properties. J Biol Chem. 1995 Dec 22;270(51):30804–30812. doi: 10.1074/jbc.270.51.30804. [DOI] [PubMed] [Google Scholar]
  4. Baykov A. A., Shestakov A. S., Kasho V. N., Vener A. V., Ivanov A. H. Kinetics and thermodynamics of catalysis by the inorganic pyrophosphatase of Escherichia coli in both directions. Eur J Biochem. 1990 Dec 27;194(3):879–887. doi: 10.1111/j.1432-1033.1990.tb19482.x. [DOI] [PubMed] [Google Scholar]
  5. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  6. Blaber M., Zhang X. J., Matthews B. W. Structural basis of amino acid alpha helix propensity. Science. 1993 Jun 11;260(5114):1637–1640. doi: 10.1126/science.8503008. [DOI] [PubMed] [Google Scholar]
  7. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  8. Chakrabartty A., Kortemme T., Baldwin R. L. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 1994 May;3(5):843–852. doi: 10.1002/pro.5560030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chan M. K., Mukund S., Kletzin A., Adams M. W., Rees D. C. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science. 1995 Mar 10;267(5203):1463–1469. doi: 10.1126/science.7878465. [DOI] [PubMed] [Google Scholar]
  10. Chen J., Brevet A., Fromant M., Lévêque F., Schmitter J. M., Blanquet S., Plateau P. Pyrophosphatase is essential for growth of Escherichia coli. J Bacteriol. 1990 Oct;172(10):5686–5689. doi: 10.1128/jb.172.10.5686-5689.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cooperman B. S. The mechanism of action of yeast inorganic pyrophosphatase. Methods Enzymol. 1982;87:526–548. doi: 10.1016/s0076-6879(82)87030-4. [DOI] [PubMed] [Google Scholar]
  12. Creamer T. P., Rose G. D. Alpha-helix-forming propensities in peptides and proteins. Proteins. 1994 Jun;19(2):85–97. doi: 10.1002/prot.340190202. [DOI] [PubMed] [Google Scholar]
  13. Delboni L. F., Mande S. C., Rentier-Delrue F., Mainfroid V., Turley S., Vellieux F. M., Martial J. A., Hol W. G. Crystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions. Protein Sci. 1995 Dec;4(12):2594–2604. doi: 10.1002/pro.5560041217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  15. Hennig M., Darimont B., Sterner R., Kirschner K., Jansonius J. N. 2.0 A structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability. Structure. 1995 Dec 15;3(12):1295–1306. doi: 10.1016/s0969-2126(01)00267-2. [DOI] [PubMed] [Google Scholar]
  16. Herschlag D., Jencks W. P. Catalysis of the hydrolysis of phosphorylated pyridines by Mg(OH)+: a possible model for enzymatic phosphoryl transfer. Biochemistry. 1990 May 29;29(21):5172–5179. doi: 10.1021/bi00473a025. [DOI] [PubMed] [Google Scholar]
  17. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  18. Höhne W. E., Wessner H., Kuranova I. P., Obmolova G. V. Kinetic characterization of a thermostable inorganic pyrophosphatase from Thermus thermophilus. Biomed Biochim Acta. 1988;47(12):941–947. [PubMed] [Google Scholar]
  19. Ichiba T., Takenaka O., Samejima T., Hachimori A. Primary structure of the inorganic pyrophosphatase from thermophilic bacterium PS-3. J Biochem. 1990 Oct;108(4):572–578. doi: 10.1093/oxfordjournals.jbchem.a123244. [DOI] [PubMed] [Google Scholar]
  20. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  21. Khechinashvili N. N., Janin J., Rodier F. Thermodynamics of the temperature-induced unfolding of globular proteins. Protein Sci. 1995 Jul;4(7):1315–1324. doi: 10.1002/pro.5560040707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kleywegt G. J., Jones T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178–185. doi: 10.1107/S0907444993011333. [DOI] [PubMed] [Google Scholar]
  23. Korndörfer I., Steipe B., Huber R., Tomschy A., Jaenicke R. The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 A resolution. J Mol Biol. 1995 Mar 3;246(4):511–521. doi: 10.1006/jmbi.1994.0103. [DOI] [PubMed] [Google Scholar]
  24. Korolev S., Nayal M., Barnes W. M., Di Cera E., Waksman G. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9264–9268. doi: 10.1073/pnas.92.20.9264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lahti R. Microbial inorganic pyrophosphatases. Microbiol Rev. 1983 Jun;47(2):169–178. doi: 10.1128/mr.47.2.169-178.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lundin M., Baltscheffsky H., Ronne H. Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J Biol Chem. 1991 Jul 5;266(19):12168–12172. [PubMed] [Google Scholar]
  27. Menéndez-Arias L., Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J Mol Biol. 1989 Mar 20;206(2):397–406. doi: 10.1016/0022-2836(89)90488-9. [DOI] [PubMed] [Google Scholar]
  28. Meyer W., Moll R., Kath T., Schäfer G. Purification, cloning, and sequencing of archaebacterial pyrophosphatase from the extreme thermoacidophile Sulfolobus acidocaldarius. Arch Biochem Biophys. 1995 May 10;319(1):149–156. doi: 10.1006/abbi.1995.1277. [DOI] [PubMed] [Google Scholar]
  29. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  30. Nicholson H., Anderson D. E., Dao-pin S., Matthews B. W. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme. Biochemistry. 1991 Oct 15;30(41):9816–9828. doi: 10.1021/bi00105a002. [DOI] [PubMed] [Google Scholar]
  31. Nojima H., Hon-Nami K., Oshima T., Noda H. Reversible thermal unfolding of thermostable cytochrome c-552. J Mol Biol. 1978 Jun 15;122(1):33–42. doi: 10.1016/0022-2836(78)90106-7. [DOI] [PubMed] [Google Scholar]
  32. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  33. Perutz M. F., Raidt H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature. 1975 May 15;255(5505):256–259. doi: 10.1038/255256a0. [DOI] [PubMed] [Google Scholar]
  34. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  35. Richards F. M. The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol. 1974 Jan 5;82(1):1–14. doi: 10.1016/0022-2836(74)90570-1. [DOI] [PubMed] [Google Scholar]
  36. Richter O. M., Schäfer G. Cloning and sequencing of the gene for the cytoplasmic inorganic pyrophosphatase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Eur J Biochem. 1992 Oct 1;209(1):351–355. doi: 10.1111/j.1432-1033.1992.tb17296.x. [DOI] [PubMed] [Google Scholar]
  37. Russell R. J., Hough D. W., Danson M. J., Taylor G. L. The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure. 1994 Dec 15;2(12):1157–1167. doi: 10.1016/s0969-2126(94)00118-9. [DOI] [PubMed] [Google Scholar]
  38. Serrano L., Fersht A. R. Capping and alpha-helix stability. Nature. 1989 Nov 16;342(6247):296–299. doi: 10.1038/342296a0. [DOI] [PubMed] [Google Scholar]
  39. Shirley B. A., Stanssens P., Hahn U., Pace C. N. Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. Biochemistry. 1992 Jan 28;31(3):725–732. doi: 10.1021/bi00118a013. [DOI] [PubMed] [Google Scholar]
  40. Teplyakov A., Obmolova G., Wilson K. S., Ishii K., Kaji H., Samejima T., Kuranova I. Crystal structure of inorganic pyrophosphatase from Thermus thermophilus. Protein Sci. 1994 Jul;3(7):1098–1107. doi: 10.1002/pro.5560030713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yip K. S., Stillman T. J., Britton K. L., Artymiuk P. J., Baker P. J., Sedelnikova S. E., Engel P. C., Pasquo A., Chiaraluce R., Consalvi V. The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure. 1995 Nov 15;3(11):1147–1158. doi: 10.1016/s0969-2126(01)00251-9. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES