Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Jul;5(7):1394–1405. doi: 10.1002/pro.5560050718

Membrane-bound states of alpha-lactalbumin: implications for the protein stability and conformation.

K M Cawthern 1, E Permyakov 1, L J Berliner 1
PMCID: PMC2143454  PMID: 8819172

Abstract

alpha-Lactalbumin (alpha-LA) associates with dimyristoylphosphatidylcholine (DMPC) or egg lecithin (EPC) liposomes. Thermal denaturation of isolated DMPC or EPC alpha-LA complexes was dependent on the metal bound state of the protein. The intrinsic fluorescence of thermally denatured DMPC-alpha-LA was sensitive to two thermal transitions: the Tc of the lipid vesicles, and the denaturation of the protein. Quenching experiments suggested that tryptophan accessibility increased upon protein-DMPC association, in contrast with earlier suggestions that the limited emission red shift upon association with the liposome was due to partial insertion of tryptophan into the apolar phase of the bilayer (Hanssens I et al., 1985, Biochim Biophys Acta 817:154-166). On the other hand, above the protein transition (70 degrees C), the spectral blue shifts and reduced accessibility to quencher suggested that tryptophan interacts significantly with the apolar phase of either DMPC and EPC. At pH 2, where the protein inserts into the bilayer rapidly, the isolated DMPC-alpha-LA complex showed a distinct fluorescence thermal transition between 40 and 60 degrees C, consistent with a partially inserted form that possesses some degree of tertiary structure and unfolds cooperatively. This result is significant in light of earlier findings of increased helicity for the acid form, i.e., molten globule state of the protein (Hanssens I et al., 1985, Biochim Biophys Acta 817:154-166). These results suggest a model where a limited expansion of conformation occurs upon association with the membrane at neutral pH and physiological temperatures, with a concomitant increase in the exposure of tryptophan to external quenchers; i.e., the current data do not support a model where an apolar, tryptophan-containing surface is covered by the lipid phase of the bilayer.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya K. R., Ren J. S., Stuart D. I., Phillips D. C., Fenna R. E. Crystal structure of human alpha-lactalbumin at 1.7 A resolution. J Mol Biol. 1991 Sep 20;221(2):571–581. doi: 10.1016/0022-2836(91)80073-4. [DOI] [PubMed] [Google Scholar]
  2. Acharya K. R., Stuart D. I., Walker N. P., Lewis M., Phillips D. C. Refined structure of baboon alpha-lactalbumin at 1.7 A resolution. Comparison with C-type lysozyme. J Mol Biol. 1989 Jul 5;208(1):99–127. doi: 10.1016/0022-2836(89)90091-0. [DOI] [PubMed] [Google Scholar]
  3. Alexandrescu A. T., Broadhurst R. W., Wormald C., Chyan C. L., Baum J., Dobson C. M. 1H-NMR assignments and local environments of aromatic residues in bovine, human and guinea pig variants of alpha-lactalbumin. Eur J Biochem. 1992 Dec 15;210(3):699–709. doi: 10.1111/j.1432-1033.1992.tb17471.x. [DOI] [PubMed] [Google Scholar]
  4. Alexandrescu A. T., Evans P. A., Pitkeathly M., Baum J., Dobson C. M. Structure and dynamics of the acid-denatured molten globule state of alpha-lactalbumin: a two-dimensional NMR study. Biochemistry. 1993 Feb 23;32(7):1707–1718. doi: 10.1021/bi00058a003. [DOI] [PubMed] [Google Scholar]
  5. Ameloot M., Hendrickx H., Herreman W., Pottel H., Van Cauwelaert F., van der Meer W. Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. Experimental verification on unilamellar vesicles and lipid/alpha-lactalbumin complexes. Biophys J. 1984 Oct;46(4):525–539. doi: 10.1016/S0006-3495(84)84050-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aramini J. M., Hiraoki T., Grace M. R., Swaddle T. W., Chiancone E., Vogel H. J. NMR and stopped-flow studies of metal ion binding to alpha-lactalbumins. Biochim Biophys Acta. 1996 Mar 7;1293(1):72–82. doi: 10.1016/0167-4838(95)00223-5. [DOI] [PubMed] [Google Scholar]
  7. Barman T. E., Bagshaw W. The modification of the tryptophan residues of bovine -lactalbumin with 2-hydroxy-5-nitrobenzyl bromide and with dimethyl(2-hydroxy-5-nitrobenzyl)sulphonium bromide. II. Effect on the specifier protein activity. Biochim Biophys Acta. 1972 Oct 31;278(3):491–500. doi: 10.1016/0005-2795(72)90009-8. [DOI] [PubMed] [Google Scholar]
  8. Barman T. E. The modification of the tryptophan residues of bovine alpha-lactalbumin with 2-hydroxy-5-nitrobenzyl bromide and with dimethyl(2-hydroxy-5-nitrobenzyl)sulphonium bromide. Biochim Biophys Acta. 1972 Feb 29;257(2):297–313. doi: 10.1016/0005-2795(72)90282-6. [DOI] [PubMed] [Google Scholar]
  9. Baum J., Dobson C. M., Evans P. A., Hanley C. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry. 1989 Jan 10;28(1):7–13. doi: 10.1021/bi00427a002. [DOI] [PubMed] [Google Scholar]
  10. Bell J. E., Castellino F. J., Trayer I. P., Hill R. L. Modification of bovine alpha-lactalbumin with N-bromosuccinimide and 2-hydroxy-5-nitrobenzylbromide. J Biol Chem. 1975 Oct 10;250(19):7579–7585. [PubMed] [Google Scholar]
  11. Berliner L. J., Koga K. Alpha-lactalbumin binding to membranes: evidence for a partially buried protein. Biochemistry. 1987 Jun 2;26(11):3006–3009. doi: 10.1021/bi00385a008. [DOI] [PubMed] [Google Scholar]
  12. Brew K., Vanaman T. C., Hill R. L. Comparison of the amino acid sequence of bovine alpha-lactalbumin and hens egg white lysozyme. J Biol Chem. 1967 Aug 25;242(16):3747–3749. [PubMed] [Google Scholar]
  13. Brodbeck U., Ebner K. E. Resolution of a soluble lactose synthetase into two protein components and solubilization of microsomal lactose synthetase. J Biol Chem. 1966 Feb 10;241(3):762–764. [PubMed] [Google Scholar]
  14. Browne W. J., North A. C., Phillips D. C., Brew K., Vanaman T. C., Hill R. L. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. J Mol Biol. 1969 May 28;42(1):65–86. doi: 10.1016/0022-2836(69)90487-2. [DOI] [PubMed] [Google Scholar]
  15. Bushueva T. L., Busel E. P., Burstein E. A. Relationship of thermal quenching of protein fluorescence to intramolecular structural mobility. Biochim Biophys Acta. 1978 May 24;534(1):141–152. doi: 10.1016/0005-2795(78)90484-1. [DOI] [PubMed] [Google Scholar]
  16. Chyan C. L., Wormald C., Dobson C. M., Evans P. A., Baum J. Structure and stability of the molten globule state of guinea-pig alpha-lactalbumin: a hydrogen exchange study. Biochemistry. 1993 Jun 1;32(21):5681–5691. doi: 10.1021/bi00072a025. [DOI] [PubMed] [Google Scholar]
  17. Creighton T. E. Protein folding. Biochem J. 1990 Aug 15;270(1):1–16. doi: 10.1042/bj2700001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dangreau H., Joniau M., De Cuyper M., Hanssens I. An intramolecular excimer forming probe used to study the interaction of alpha-lactalbumin with model membranes. Biochemistry. 1982 Jul 20;21(15):3594–3598. doi: 10.1021/bi00258a010. [DOI] [PubMed] [Google Scholar]
  19. Dolgikh D. A., Gilmanshin R. I., Brazhnikov E. V., Bychkova V. E., Semisotnov G. V., Venyaminov SYu, Ptitsyn O. B. Alpha-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett. 1981 Dec 28;136(2):311–315. doi: 10.1016/0014-5793(81)80642-4. [DOI] [PubMed] [Google Scholar]
  20. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 1976 Feb 10;15(3):672–680. doi: 10.1021/bi00648a035. [DOI] [PubMed] [Google Scholar]
  21. Eftink M. R. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J. 1994 Feb;66(2 Pt 1):482–501. doi: 10.1016/s0006-3495(94)80799-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grobler J. A., Wang M., Pike A. C., Brew K. Study by mutagenesis of the roles of two aromatic clusters of alpha-lactalbumin in aspects of its action in the lactose synthase system. J Biol Chem. 1994 Feb 18;269(7):5106–5114. [PubMed] [Google Scholar]
  23. Grunwald J., Berliner L. J. Immobilized bovine lactose synthase. A method of topographical analysis of the active site. Biochim Biophys Acta. 1978 Mar 14;523(1):53–58. doi: 10.1016/0005-2744(78)90008-6. [DOI] [PubMed] [Google Scholar]
  24. Hanssens I., Herreman W., Van Ceunebroeck J. C., Dangreau H., Gielens C., Preaux G., Van Cauwelaert F. Interaction of alpha-lactalbumin with dimyristoylphosphatidylcholine vesicles. III. Influence of the temperature and of the lipid-to-protein molar ratio on the complex formation. Biochim Biophys Acta. 1983 Mar 9;728(3):293–304. doi: 10.1016/0005-2736(83)90498-4. [DOI] [PubMed] [Google Scholar]
  25. Hanssens I., Houthuys C., Herreman W., van Cauwelaert F. H. Interaction of alpha-lactalbumin with dimyristoyl phosphatidylcholine vesicles. I. A microcalorimetric and fluorescence study. Biochim Biophys Acta. 1980 Nov 18;602(3):539–557. doi: 10.1016/0005-2736(80)90333-8. [DOI] [PubMed] [Google Scholar]
  26. Hill R. L., Brew K. Lactose synthetase. Adv Enzymol Relat Areas Mol Biol. 1975;43:411–490. doi: 10.1002/9780470122884.ch5. [DOI] [PubMed] [Google Scholar]
  27. Hiraoka Y., Segawa T., Kuwajima K., Sugai S., Murai N. alpha-Lactalbumin: a calcium metalloprotein. Biochem Biophys Res Commun. 1980 Aug 14;95(3):1098–1104. doi: 10.1016/0006-291x(80)91585-5. [DOI] [PubMed] [Google Scholar]
  28. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  29. Ikeguchi M., Kuwajima K., Sugai S. Ca2+-induced alteration in the unfolding behavior of alpha-lactalbumin. J Biochem. 1986 Apr;99(4):1191–1201. doi: 10.1093/oxfordjournals.jbchem.a135582. [DOI] [PubMed] [Google Scholar]
  30. KRONMAN M. J., ANDREOTTI R. E. INTER- AND INTRAMOLECULAR INTERACTIONS OF ALPHA-LACTALBUMIN. I. THE APPARENT HETEROGENEITY AT ACID PH. Biochemistry. 1964 Aug;3:1145–1151. doi: 10.1021/bi00896a024. [DOI] [PubMed] [Google Scholar]
  31. Kim J., Kim H. Fusion of phospholipid vesicles induced by alpha-lactalbumin at acidic pH. Biochemistry. 1986 Dec 2;25(24):7867–7874. doi: 10.1021/bi00372a012. [DOI] [PubMed] [Google Scholar]
  32. Kuhn N. J., Carrick D. T., Wilde C. J. Lactose synthesis: the possibilities of regulation. J Dairy Sci. 1980 Feb;63(2):328–336. doi: 10.3168/jds.S0022-0302(80)82934-1. [DOI] [PubMed] [Google Scholar]
  33. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  34. Lakey J. H., Massotte D., Heitz F., Dasseux J. L., Faucon J. F., Parker M. W., Pattus F. Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study. Eur J Biochem. 1991 Mar 28;196(3):599–607. doi: 10.1111/j.1432-1033.1991.tb15855.x. [DOI] [PubMed] [Google Scholar]
  35. Lala A. K., Kaul P., Ratnam P. B. Membrane-protein interaction and the molten globule state: interaction of alpha-lactalbumin with membranes. J Protein Chem. 1995 Oct;14(7):601–609. doi: 10.1007/BF01886886. [DOI] [PubMed] [Google Scholar]
  36. Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
  37. Lindahl L., Vogel H. J. Metal-ion-dependent hydrophobic-interaction chromatography of alpha-lactalbumins. Anal Biochem. 1984 Aug 1;140(2):394–402. doi: 10.1016/0003-2697(84)90184-2. [DOI] [PubMed] [Google Scholar]
  38. McKenzie H. A., White F. H., Jr Lysozyme and alpha-lactalbumin: structure, function, and interrelationships. Adv Protein Chem. 1991;41:173–315. doi: 10.1016/s0065-3233(08)60198-9. [DOI] [PubMed] [Google Scholar]
  39. Meers P., Mealy T. Relationship between annexin V tryptophan exposure, calcium, and phospholipid binding. Biochemistry. 1993 May 25;32(20):5411–5418. doi: 10.1021/bi00071a016. [DOI] [PubMed] [Google Scholar]
  40. Mitranic M. M., Boggs J. M., Moscarello M. A. Modulation of bovine milk galactosyltransferase activity by lipids. J Biol Chem. 1983 Jul 25;258(14):8630–8636. [PubMed] [Google Scholar]
  41. Mitranic M. M., Moscarello M. A. The effect of acidic lipids on the activity of bovine milk galactosyltransferase in vesicles of different phosphatidylethanolamines. Biochim Biophys Acta. 1985 Jun 11;816(1):182–186. doi: 10.1016/0005-2736(85)90407-9. [DOI] [PubMed] [Google Scholar]
  42. Mitranic M. M., Pâquet M. R., Moscarello M. A. The interaction of bovine milk galactosyltransferase with lipid and alpha-lactalbumin. Biochim Biophys Acta. 1988 Oct 12;956(3):277–284. doi: 10.1016/0167-4838(88)90144-6. [DOI] [PubMed] [Google Scholar]
  43. Murakami K., Andree P. J., Berliner L. J. Metal ion binding to alpha-lactalbumin species. Biochemistry. 1982 Oct 26;21(22):5488–5494. doi: 10.1021/bi00265a017. [DOI] [PubMed] [Google Scholar]
  44. Murakami K., Berliner L. J. A distinct zinc binding site in the alpha-lactalbumins regulates calcium binding. Is there a physiological role for this control? Biochemistry. 1983 Jul 5;22(14):3370–3374. doi: 10.1021/bi00283a010. [DOI] [PubMed] [Google Scholar]
  45. Musci G., Berliner L. J. Physiological roles of zinc and calcium binding to alpha-lactalbumin in lactose biosynthesis. Biochemistry. 1985 Nov 19;24(24):6945–6948. doi: 10.1021/bi00345a029. [DOI] [PubMed] [Google Scholar]
  46. Musci G., Berliner L. J. Probing different conformational states of bovine alpha-lactalbumin: fluorescence studies with 4,4'-bis[1-(phenylamino)-8-naphthalenesulfonate]. Biochemistry. 1985 Jul 16;24(15):3852–3856. doi: 10.1021/bi00336a006. [DOI] [PubMed] [Google Scholar]
  47. Navaratnam N., Virk S. S., Ward S., Kuhn N. J. Cationic activation of galactosyltransferase from rat mammary Golgi membranes by polyamines and by basic peptides and proteins. Biochem J. 1986 Oct 15;239(2):423–433. doi: 10.1042/bj2390423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Navaratnam N., Ward S., Fisher C., Kuhn N. J., Keen J. N., Findlay J. B. Purification, properties and cation activation of galactosyltransferase from lactating-rat mammary Golgi membranes. Eur J Biochem. 1988 Feb 1;171(3):623–629. doi: 10.1111/j.1432-1033.1988.tb13833.x. [DOI] [PubMed] [Google Scholar]
  49. Ohgushi M., Wada A. 'Molten-globule state': a compact form of globular proteins with mobile side-chains. FEBS Lett. 1983 Nov 28;164(1):21–24. doi: 10.1016/0014-5793(83)80010-6. [DOI] [PubMed] [Google Scholar]
  50. Ostrovsky A. V., Kalinichenko L. P., Emelyanenko V. I., Klimanov A. V., Permyakov E. A. Environment of tryptophan residues in various conformational states of alpha-lactalbumin studied by time-resolved and steady-state fluorescence spectroscopy. Biophys Chem. 1988 Jun;30(2):105–112. doi: 10.1016/0301-4622(88)85008-7. [DOI] [PubMed] [Google Scholar]
  51. Permyakov E. A., Burstein E. A. Some aspects of studies of thermal transitions in proteins by means of their intrinsic fluorescence. Biophys Chem. 1984 May;19(3):265–271. doi: 10.1016/0301-4622(84)87009-x. [DOI] [PubMed] [Google Scholar]
  52. Permyakov E. A., Kreimer D. I., Kalinichenko L. P., Shnyrov V. L. Interactions of calcium binding proteins, parvalbumin and alpha-lactalbumin, with dipalmitoylphosphatidylcholine vesicles. Gen Physiol Biophys. 1988 Feb;7(1):95–107. [PubMed] [Google Scholar]
  53. Permyakov E. A., Morozova L. A., Kalinichenko L. P., Derezhkov VYu Interaction of alpha-lactalbumin with Cu2+. Biophys Chem. 1988 Oct;32(1):37–42. doi: 10.1016/0301-4622(88)85031-2. [DOI] [PubMed] [Google Scholar]
  54. Permyakov E. A., Shnyrov V. L., Kalinichenko L. P., Kuchar A., Reyzer I. L., Berliner L. J. Binding of Zn(II) ions to alpha-lactalbumin. J Protein Chem. 1991 Dec;10(6):577–584. doi: 10.1007/BF01025709. [DOI] [PubMed] [Google Scholar]
  55. Permyakov E. A., Yarmolenko V. V., Kalinichenko L. P., Morozova L. A., Burstein E. A. Calcium binding to alpha-lactalbumin: structural rearrangement and association constant evaluation by means of intrinsic protein fluorescence changes. Biochem Biophys Res Commun. 1981 May 15;100(1):191–197. doi: 10.1016/s0006-291x(81)80081-2. [DOI] [PubMed] [Google Scholar]
  56. Reich J. G., Wangermann G., Falck M., Rohde K. A general strategy for parameter estimation from isosteric and allosteric-kinetic data and binding measurements. Eur J Biochem. 1972 Apr 11;26(3):368–379. doi: 10.1111/j.1432-1033.1972.tb01776.x. [DOI] [PubMed] [Google Scholar]
  57. Ren J., Stuart D. I., Acharya K. R. Alpha-lactalbumin possesses a distinct zinc binding site. J Biol Chem. 1993 Sep 15;268(26):19292–19298. [PubMed] [Google Scholar]
  58. Sommers P. B., Kronman M. J. Comparative fluorescence properties of bovine, goat, human and guinea pig alpha lactalbumin. Characterization of the environments of individual tryptophan residues in partially folded conformers. Biophys Chem. 1980 Apr;11(2):217–232. doi: 10.1016/0301-4622(80)80024-x. [DOI] [PubMed] [Google Scholar]
  59. Stuart D. I., Acharya K. R., Walker N. P., Smith S. G., Lewis M., Phillips D. C. Alpha-lactalbumin possesses a novel calcium binding loop. Nature. 1986 Nov 6;324(6092):84–87. doi: 10.1038/324084a0. [DOI] [PubMed] [Google Scholar]
  60. Volwerk J. J., Filthuth E., Griffith O. H., Jain M. K. Phosphatidylinositol-specific phospholipase C from Bacillus cereus at the lipid-water interface: interfacial binding, catalysis, and activation. Biochemistry. 1994 Mar 29;33(12):3464–3474. doi: 10.1021/bi00178a002. [DOI] [PubMed] [Google Scholar]
  61. Witsell D. L., Casey C. E., Neville M. C. Divalent cation activation of galactosyltransferase in native mammary Golgi vesicles. J Biol Chem. 1990 Sep 15;265(26):15731–15737. [PubMed] [Google Scholar]
  62. Yutani K., Ogasahara K., Kuwajima K. Absence of the thermal transition in apo-alpha-lactalbumin in the molten globule state. A study by differential scanning microcalorimetry. J Mol Biol. 1992 Nov 20;228(2):347–350. doi: 10.1016/0022-2836(92)90824-4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES