Abstract
Flavodoxins are alpha/beta proteins that mediate electron transfer reactions. The conformational stability of apoflavodoxin from Anaboena PCC 7119 has been studied by calorimetry and urea denaturation as a function of pH and ionic strength. At pH > 12, the protein is unfolded. Between pH 11 and pH 6, the apoprotein is folded properly as judged from near-ultraviolet (UV) circular dichroism (CD) and high-field 1H NMR spectra. In this pH interval, apoflavodoxin is a monomer and its unfolding by urea or temperature follows a simple two-state mechanism. The specific heat capacity of unfolding for this native conformation is unusually low. Near its isoelectric point (3.9), the protein is highly insoluble. At lower pH values (pH 3.5-2.0), apoflavodoxin adopts a conformation with the properties of a molten globule. Although apoflavodoxin at pH 2 unfolds cooperatively with urea in a reversible fashion and the fluorescence and far-UV CD unfolding curves coincide, the transition midpoint depends on the concentration of protein, ruling out a simple two-state process at acidic pH. Apoflavodoxin constitutes a promising system for the analysis of the stability and folding of alpha/beta proteins and for the study of the interaction between apoflavoproteins and their corresponding redox cofactors.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrick D., Baldwin R. L. Three-state analysis of sperm whale apomyoglobin folding. Biochemistry. 1993 Apr 13;32(14):3790–3796. doi: 10.1021/bi00065a035. [DOI] [PubMed] [Google Scholar]
- Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
- Carra J. H., Anderson E. A., Privalov P. L. Thermodynamics of staphylococcal nuclease denaturation. II. The A-state. Protein Sci. 1994 Jun;3(6):952–959. doi: 10.1002/pro.5560030610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobson C. M., Evans P. A., Radford S. E. Understanding how proteins fold: the lysozyme story so far. Trends Biochem Sci. 1994 Jan;19(1):31–37. doi: 10.1016/0968-0004(94)90171-6. [DOI] [PubMed] [Google Scholar]
- Doig A. J., Williams D. H. Why water-soluble, compact, globular proteins have similar specific enthalpies of unfolding at 110 degrees C. Biochemistry. 1992 Oct 6;31(39):9371–9375. doi: 10.1021/bi00154a007. [DOI] [PubMed] [Google Scholar]
- Edmondson D. E., Tollin G. Chemical and physical characterization of the Shethna flavoprotein and apoprotein and kinetics and thermodynamics of flavin analog binding to the apoprotein. Biochemistry. 1971 Jan 5;10(1):124–132. doi: 10.1021/bi00777a019. [DOI] [PubMed] [Google Scholar]
- Fersht A. R. The sixth Datta Lecture. Protein folding and stability: the pathway of folding of barnase. FEBS Lett. 1993 Jun 28;325(1-2):5–16. doi: 10.1016/0014-5793(93)81405-o. [DOI] [PubMed] [Google Scholar]
- Filimonov V. V., Prieto J., Martinez J. C., Bruix M., Mateo P. L., Serrano L. Thermodynamic analysis of the chemotactic protein from Escherichia coli, CheY. Biochemistry. 1993 Nov 30;32(47):12906–12921. doi: 10.1021/bi00210a045. [DOI] [PubMed] [Google Scholar]
- Fillat M. F., Borrias W. E., Weisbeek P. J. Isolation and overexpression in Escherichia coli of the flavodoxin gene from Anabaena PCC 7119. Biochem J. 1991 Nov 15;280(Pt 1):187–191. doi: 10.1042/bj2800187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Genzor C. G., Perales-Alcón A., Sancho J., Romero A. Closure of a tyrosine/tryptophan aromatic gate leads to a compact fold in apo flavodoxin. Nat Struct Biol. 1996 Apr;3(4):329–332. doi: 10.1038/nsb0496-329. [DOI] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Hughson F. M., Barrick D., Baldwin R. L. Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry. 1991 Apr 30;30(17):4113–4118. doi: 10.1021/bi00231a001. [DOI] [PubMed] [Google Scholar]
- Jennings P. A., Finn B. E., Jones B. E., Matthews C. R. A reexamination of the folding mechanism of dihydrofolate reductase from Escherichia coli: verification and refinement of a four-channel model. Biochemistry. 1993 Apr 13;32(14):3783–3789. doi: 10.1021/bi00065a034. [DOI] [PubMed] [Google Scholar]
- Khurana R., Hate A. T., Nath U., Udgaonkar J. B. pH dependence of the stability of barstar to chemical and thermal denaturation. Protein Sci. 1995 Jun;4(6):1133–1144. doi: 10.1002/pro.5560040612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makhatadze G. I., Medvedkin V. N., Privalov P. L. Partial molar volumes of polypeptides and their constituent groups in aqueous solution over a broad temperature range. Biopolymers. 1990;30(11-12):1001–1010. doi: 10.1002/bip.360301102. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Privalov P. L. Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J Mol Biol. 1990 May 20;213(2):375–384. doi: 10.1016/S0022-2836(05)80197-4. [DOI] [PubMed] [Google Scholar]
- Martínez J. C., el Harrous M., Filimonov V. V., Mateo P. L., Fersht A. R. A calorimetric study of the thermal stability of barnase and its interaction with 3'GMP. Biochemistry. 1994 Apr 5;33(13):3919–3926. doi: 10.1021/bi00179a018. [DOI] [PubMed] [Google Scholar]
- Murphy K. P., Bhakuni V., Xie D., Freire E. Molecular basis of co-operativity in protein folding. III. Structural identification of cooperative folding units and folding intermediates. J Mol Biol. 1992 Sep 5;227(1):293–306. doi: 10.1016/0022-2836(92)90699-k. [DOI] [PubMed] [Google Scholar]
- Murphy K. P., Privalov P. L., Gill S. J. Common features of protein unfolding and dissolution of hydrophobic compounds. Science. 1990 Feb 2;247(4942):559–561. doi: 10.1126/science.2300815. [DOI] [PubMed] [Google Scholar]
- Neet K. E., Timm D. E. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Protein Sci. 1994 Dec;3(12):2167–2174. doi: 10.1002/pro.5560031202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- Pace C. N., Laurents D. V. A new method for determining the heat capacity change for protein folding. Biochemistry. 1989 Mar 21;28(6):2520–2525. doi: 10.1021/bi00432a026. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
- Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
- Ptitsyn O. B., Uversky V. N. The molten globule is a third thermodynamical state of protein molecules. FEBS Lett. 1994 Mar 14;341(1):15–18. doi: 10.1016/0014-5793(94)80231-9. [DOI] [PubMed] [Google Scholar]
- Ruiz-Arribas A., Santamaría R. I., Zhadan G. G., Villar E., Shnyrov V. L. Differential scanning calorimetric study of the thermal stability of xylanase from Streptomyces halstedii JM8. Biochemistry. 1994 Nov 22;33(46):13787–13791. doi: 10.1021/bi00250a032. [DOI] [PubMed] [Google Scholar]
- Sanchez-Ruiz J. M. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J. 1992 Apr;61(4):921–935. doi: 10.1016/S0006-3495(92)81899-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
- Semisotnov G. V., Rodionova N. A., Razgulyaev O. I., Uversky V. N., Gripas' A. F., Gilmanshin R. I. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers. 1991 Jan;31(1):119–128. doi: 10.1002/bip.360310111. [DOI] [PubMed] [Google Scholar]
- Serrano L., Kellis J. T., Jr, Cann P., Matouschek A., Fersht A. R. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J Mol Biol. 1992 Apr 5;224(3):783–804. doi: 10.1016/0022-2836(92)90562-x. [DOI] [PubMed] [Google Scholar]
- Spolar R. S., Livingstone J. R., Record M. T., Jr Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry. 1992 Apr 28;31(16):3947–3955. doi: 10.1021/bi00131a009. [DOI] [PubMed] [Google Scholar]
- Tiktopulo E. I., Privalov P. L., Odintsova T. I., Ermokhina T. M., Krasheninnikov I. A., Aviles F. X., Cary P. D., Crane-Robinson C. The central tryptic fragment of histones H1 and H5 is a fully compacted domain and is the only folded region in the polypeptide chain. A thermodynamic study. Eur J Biochem. 1982 Feb;122(2):327–331. doi: 10.1111/j.1432-1033.1982.tb05884.x. [DOI] [PubMed] [Google Scholar]
- Vuilleumier S., Sancho J., Loewenthal R., Fersht A. R. Circular dichroism studies of barnase and its mutants: characterization of the contribution of aromatic side chains. Biochemistry. 1993 Oct 5;32(39):10303–10313. doi: 10.1021/bi00090a005. [DOI] [PubMed] [Google Scholar]