Abstract
The cellular and structural properties and binding capabilities of a lipocalin expressed in the early neural plate of Xenopus laevis embryos and the adult choroid plexus have been investigated. It was found that this lipocalin, termed Xlcpl1, binds retinal at a nanomolar concentration, retinoic acid in the micromolar range, but does not show binding to retinol. Furthermore, this protein also binds D/L thyroxine. The Xlcpl1 cDNA was expressed in cell culture using the vaccinia virus expression system. In AtT20 cells, Xlcpl1 was secreted via the constitutive secretory pathway. We therefore assume that cpl1 binds retinaldehyde during the transport through the compartments of the secretory pathway that are considered to be the storage compartments of retinoids. Therefore, cpl1-expressing cells will secrete the precursors of active retinoids such as retinoic acid isomers. These retinoids may enter the cytosol by diffusion or receptor-controlled mechanisms, as has been shown for exogenously applied retinoids. Based on these data, it is suggested that cpl1 is an integral member of the retinoid signaling pathway and, therefore, it plays a key role in pattern formation in early embryonic development.
Full Text
The Full Text of this article is available as a PDF (4.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barton G. J., Sternberg M. J. A strategy for the rapid multiple alignment of protein sequences. Confidence levels from tertiary structure comparisons. J Mol Biol. 1987 Nov 20;198(2):327–337. doi: 10.1016/0022-2836(87)90316-0. [DOI] [PubMed] [Google Scholar]
- Cogan U., Kopelman M., Mokady S., Shinitzky M. Binding affinities of retinol and related compounds to retinol binding proteins. Eur J Biochem. 1976 May 17;65(1):71–78. doi: 10.1111/j.1432-1033.1976.tb10390.x. [DOI] [PubMed] [Google Scholar]
- Creech Kraft J., Schuh T., Juchau M. R., Kimelman D. Temporal distribution, localization and metabolism of all-trans-retinol, didehydroretinol and all-trans-retinal during Xenopus development. Biochem J. 1994 Jul 1;301(Pt 1):111–119. [PMC free article] [PubMed] [Google Scholar]
- Dekker E. J., Vaessen M. J., van den Berg C., Timmermans A., Godsave S., Holling T., Nieuwkoop P., Geurts van Kessel A., Durston A. Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos. Development. 1994 Apr;120(4):973–985. doi: 10.1242/dev.120.4.973. [DOI] [PubMed] [Google Scholar]
- Durston A. J., Timmermans J. P., Hage W. J., Hendriks H. F., de Vries N. J., Heideveld M., Nieuwkoop P. D. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature. 1989 Jul 13;340(6229):140–144. doi: 10.1038/340140a0. [DOI] [PubMed] [Google Scholar]
- Falkner F. G., Moss B. Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. J Virol. 1988 Jun;62(6):1849–1854. doi: 10.1128/jvi.62.6.1849-1854.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandez J., Andrews L., Mische S. M. An improved procedure for enzymatic digestion of polyvinylidene difluoride-bound proteins for internal sequence analysis. Anal Biochem. 1994 Apr;218(1):112–117. doi: 10.1006/abio.1994.1148. [DOI] [PubMed] [Google Scholar]
- Flower D. R., North A. C., Attwood T. K. Structure and sequence relationships in the lipocalins and related proteins. Protein Sci. 1993 May;2(5):753–761. doi: 10.1002/pro.5560020507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harland R. M. Neural induction in Xenopus. Curr Opin Genet Dev. 1994 Aug;4(4):543–549. doi: 10.1016/0959-437x(94)90070-j. [DOI] [PubMed] [Google Scholar]
- Huber R., Schneider M., Mayr I., Müller R., Deutzmann R., Suter F., Zuber H., Falk H., Kayser H. Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 A resolution. J Mol Biol. 1987 Dec 5;198(3):499–513. doi: 10.1016/0022-2836(87)90296-8. [DOI] [PubMed] [Google Scholar]
- Kato M., Sung W. K., Kato K., Goodman D. S. Immunohistochemical studies on the localization of cellular retinol-binding protein in rat testis and epididymis. Biol Reprod. 1985 Feb;32(1):173–189. doi: 10.1095/biolreprod32.1.173. [DOI] [PubMed] [Google Scholar]
- Kraft J. C., Kimelman D., Juchau M. R. Xenopus laevis: a model system for the study of embryonic retinoid metabolism. I. Embryonic metabolism of 9-cis- and all-trans-retinals and retinols to their corresponding acid forms. Drug Metab Dispos. 1995 Jan;23(1):72–82. [PubMed] [Google Scholar]
- Kraft J. C., Schuh T., Juchau M., Kimelman D. The retinoid X receptor ligand, 9-cis-retinoic acid, is a potential regulator of early Xenopus development. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3067–3071. doi: 10.1073/pnas.91.8.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langston A. W., Gudas L. J. Retinoic acid and homeobox gene regulation. Curr Opin Genet Dev. 1994 Aug;4(4):550–555. doi: 10.1016/0959-437x(94)90071-a. [DOI] [PubMed] [Google Scholar]
- Newcomer M. E., Pappas R. S., Ong D. E. X-ray crystallographic identification of a protein-binding site for both all-trans- and 9-cis-retinoic acid. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9223–9227. doi: 10.1073/pnas.90.19.9223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newcomer M. E. Retinoid-binding proteins: structural determinants important for function. FASEB J. 1995 Feb;9(2):229–239. doi: 10.1096/fasebj.9.2.7781925. [DOI] [PubMed] [Google Scholar]
- Newcomer M. E. Structure of the epididymal retinoic acid binding protein at 2.1 A resolution. Structure. 1993 Sep 15;1(1):7–18. doi: 10.1016/0969-2126(93)90004-z. [DOI] [PubMed] [Google Scholar]
- Pappas R. S., Newcomer M. E., Ong D. E. Endogenous retinoids in rat epididymal tissue and rat and human spermatozoa. Biol Reprod. 1993 Feb;48(2):235–247. doi: 10.1095/biolreprod48.2.235. [DOI] [PubMed] [Google Scholar]
- Porter S. B., Ong D. E., Chytil F., Orgebin-Crist M. C. Localization of cellular retinol-binding protein and cellular retinoic acid-binding protein in the rat testis and epididymis. J Androl. 1985 May-Jun;6(3):197–212. doi: 10.1002/j.1939-4640.1985.tb00836.x. [DOI] [PubMed] [Google Scholar]
- Posch K. C., Boerman M. H., Burns R. D., Napoli J. L. Holocellular retinol binding protein as a substrate for microsomal retinal synthesis. Biochemistry. 1991 Jun 25;30(25):6224–6230. doi: 10.1021/bi00239a021. [DOI] [PubMed] [Google Scholar]
- Posch K. C., Burns R. D., Napoli J. L. Biosynthesis of all-trans-retinoic acid from retinal. Recognition of retinal bound to cellular retinol binding protein (type I) as substrate by a purified cytosolic dehydrogenase. J Biol Chem. 1992 Sep 25;267(27):19676–19682. [PubMed] [Google Scholar]
- Richter K., Grunz H., Dawid I. B. Gene expression in the embryonic nervous system of Xenopus laevis. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8086–8090. doi: 10.1073/pnas.85.21.8086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stunnenberg H. G., Lange H., Philipson L., van Miltenburg R. T., van der Vliet P. C. High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus. Nucleic Acids Res. 1988 Mar 25;16(6):2431–2444. doi: 10.1093/nar/16.6.2431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Way M., Pope B., Gooch J., Hawkins M., Weeds A. G. Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J. 1990 Dec;9(12):4103–4109. doi: 10.1002/j.1460-2075.1990.tb07632.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]