Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Jul;5(7):1342–1354. doi: 10.1002/pro.5560050713

Cytochrome c3 from Desulfovibrio gigas: crystal structure at 1.8 A resolution and evidence for a specific calcium-binding site.

P M Matias 1, J Morais 1, R Coelho 1, M A Carrondo 1, K Wilson 1, Z Dauter 1, L Sieker 1
PMCID: PMC2143463  PMID: 8819167

Abstract

Crystals of the tetraheme cytochrome c3 from sulfate-reducing bacteria Desulfovibrio gigas (Dg) (MW 13 kDa, 111 residues, four heme groups) were obtained and X-ray diffraction data collected to 1.8 A resolution. The structure was solved by the method of molecular replacement and the resulting model refined to a conventional R-factor of 14.9%. The three-dimensional structure shows many similarities to other known crystal structures of tetraheme c3 cytochromes, but it also shows some remarkable differences. In particular, the location of the aromatic residues around the heme groups, which may play a fundamental role in the electron transfer processes of the molecule, are well conserved in the cases of hemes I, III, and IV. However, heme II has an aromatic environment that is completely different to that found in other related cytochromes c3. Another unusual feature is the presence of a Ca2+ ion coordinated by oxygen atoms supplied by the protein within a loop near the N-terminus. It is speculated that this loop may be stabilized by the presence of this Ca2+ ion, may contribute to heme-redox perturbation, and might even be involved in the specificity of recognition with its redox partner.

Full Text

The Full Text of this article is available as a PDF (7.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brayer G. D., Luo Y., Withers S. G. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995 Sep;4(9):1730–1742. doi: 10.1002/pro.5560040908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen L., Liu M. Y., Le Gall J. Calcium is required for the reduction of sulfite from hydrogen in a reconstituted electron transfer chain from the sulfate reducing bacterium, Desulfovibrio gigas. Biochem Biophys Res Commun. 1991 Oct 15;180(1):238–242. doi: 10.1016/s0006-291x(05)81282-3. [DOI] [PubMed] [Google Scholar]
  3. Czjzek M., Payan F., Guerlesquin F., Bruschi M., Haser R. Crystal structure of cytochrome c3 from Desulfovibrio desulfuricans Norway at 1.7 A resolution. J Mol Biol. 1994 Nov 4;243(4):653–667. doi: 10.1016/0022-2836(94)90039-6. [DOI] [PubMed] [Google Scholar]
  4. Fülöp V., Ridout C. J., Greenwood C., Hajdu J. Crystal structure of the di-haem cytochrome c peroxidase from Pseudomonas aeruginosa. Structure. 1995 Nov 15;3(11):1225–1233. doi: 10.1016/s0969-2126(01)00258-1. [DOI] [PubMed] [Google Scholar]
  5. Gilmour R., Goodhew C. F., Pettigrew G. W., Prazeres S., Moura J. J., Moura I. The kinetics of the oxidation of cytochrome c by Paracoccus cytochrome c peroxidase. Biochem J. 1994 Jun 15;300(Pt 3):907–914. doi: 10.1042/bj3000907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Higuchi Y., Kusunoki M., Matsuura Y., Yasuoka N., Kakudo M. Refined structure of cytochrome c3 at 1.8 A resolution. J Mol Biol. 1984 Jan 5;172(1):109–139. doi: 10.1016/0022-2836(84)90417-0. [DOI] [PubMed] [Google Scholar]
  7. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  8. Matias P. M., Frazão C., Morais J., Coll M., Carrondo M. A. Structure analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 1.9 A resolution. J Mol Biol. 1993 Dec 5;234(3):680–699. doi: 10.1006/jmbi.1993.1620. [DOI] [PubMed] [Google Scholar]
  9. Morais J., Palma P. N., Frazão C., Caldeira J., LeGall J., Moura I., Moura J. J., Carrondo M. A. Structure of the tetraheme cytochrome from Desulfovibrio desulfuricans ATCC 27774: X-ray diffraction and electron paramagnetic resonance studies. Biochemistry. 1995 Oct 3;34(39):12830–12841. doi: 10.1021/bi00039a044. [DOI] [PubMed] [Google Scholar]
  10. Morimoto Y., Tani T., Okumura H., Higuchi Y., Yasuoka N. Effects of amino acid substitution on three-dimensional structure: an X-ray analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 2 A resolution. J Biochem. 1991 Oct;110(4):532–540. doi: 10.1093/oxfordjournals.jbchem.a123615. [DOI] [PubMed] [Google Scholar]
  11. Piçarra-Pereira M. A., Turner D. L., LeGall J., Xavier A. V. Structural studies on Desulfovibrio gigas cytochrome c3 by two-dimensional 1H-nuclear-magnetic-resonance spectroscopy. Biochem J. 1993 Sep 15;294(Pt 3):909–915. doi: 10.1042/bj2940909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Poulos T. L., Edwards S. L., Wariishi H., Gold M. H. Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem. 1993 Feb 25;268(6):4429–4440. doi: 10.2210/pdb1lga/pdb. [DOI] [PubMed] [Google Scholar]
  13. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  14. Santos H., Moura J. J., Moura I., LeGall J., Xavier A. V. NMR studies of electron transfer mechanisms in a protein with interacting redox centres: Desulfovibrio gigas cytochrome c3. Eur J Biochem. 1984 Jun 1;141(2):283–296. doi: 10.1111/j.1432-1033.1984.tb08190.x. [DOI] [PubMed] [Google Scholar]
  15. Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES