Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Jul;5(7):1215–1228. doi: 10.1002/pro.5560050701

Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences.

P M Bayley 1, W A Findlay 1, S R Martin 1
PMCID: PMC2143466  PMID: 8819155

Abstract

The interaction between calmodulin (CaM) and peptide M13, its target binding sequence from skeletal muscle myosin light chain kinase, involves predominantly two sets of interactions, between the N-terminal target residues and the C-domain of calmodulin, and between the C-terminal target residues and the N-domain of calmodulin (Ikura M et al., 1992, Science 256:632-638). Using short synthetic peptides based on the two halves of the target sequence, the interactions with calmodulin and its separate C-domain have been studied by fluorescence and CD spectroscopy, calcium binding, and kinetic techniques. Peptide WF10 (residues 1-10 of M13) binds to CaM with Kd approximately 1 microM; peptide FW10 (residues 9-18 of M13, with Phe-17-->Trp substitution) binds to CaM with Kd approximately 100 microM. The effect of peptide WF10 on calcium binding to calmodulin produces a biphasic saturation curve, with marked enhancement of affinity for the binding of two calcium ions to the C-domain, forming a stable half-saturated complex, Ca2-CaM-peptide, and confirming the functional importance of the interaction of this sequence with the C-domain. Stopped-flow studies show that the EGTA-induced dissociation of WF10 from Ca4-CaM proceeds by a reversible relaxation mechanism from a kinetic intermediate state, also involving half-saturation of CaM, and the same mechanism is evident for the full target peptide. Interaction of the N-terminal target residues with the C-domain is energetically the most important component, but interaction of calmodulin with the whole target sequence is necessary to induce the full cooperative interaction of the two contiguous elements of the target sequence with both N- and C-domains of calmodulin. Thus, the interaction of calmodulin with the M13 sequence can be dissected on both a structural and kinetic basis into partial reactions involving intermediates comprising distinct regions of the target sequence. We propose a general mechanism for the calcium regulation of calmodulin-dependent enzyme activation, involving an intermediate complex formed by interaction of the calmodulin C-domain and the corresponding part of the target sequence. This intermediate species can function to regulate the overall calcium sensitivity of activation and to determine the affinity of the calmodulin target interaction.

Full Text

The Full Text of this article is available as a PDF (5.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  2. Findlay W. A., Gradwell M. J., Bayley P. M. Role of the N-terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin. Protein Sci. 1995 Nov;4(11):2375–2382. doi: 10.1002/pro.5560041116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Finn B. E., Evenäs J., Drakenberg T., Waltho J. P., Thulin E., Forsén S. Calcium-induced structural changes and domain autonomy in calmodulin. Nat Struct Biol. 1995 Sep;2(9):777–783. doi: 10.1038/nsb0995-777. [DOI] [PubMed] [Google Scholar]
  4. Gao Z. H., Krebs J., VanBerkum M. F., Tang W. J., Maune J. F., Means A. R., Stull J. T., Beckingham K. Activation of four enzymes by two series of calmodulin mutants with point mutations in individual Ca2+ binding sites. J Biol Chem. 1993 Sep 25;268(27):20096–20104. [PubMed] [Google Scholar]
  5. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  6. Gough A. H., Taylor D. L. Fluorescence anisotropy imaging microscopy maps calmodulin binding during cellular contraction and locomotion. J Cell Biol. 1993 Jun;121(5):1095–1107. doi: 10.1083/jcb.121.5.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guerini D., Krebs J., Carafoli E. Stimulation of the purified erythrocyte Ca2+-ATPase by tryptic fragments of calmodulin. J Biol Chem. 1984 Dec 25;259(24):15172–15177. [PubMed] [Google Scholar]
  8. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  9. Ikura M., Kay L. E., Krinks M., Bax A. Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: indication of a conformational change in the central helix. Biochemistry. 1991 Jun 4;30(22):5498–5504. doi: 10.1021/bi00236a024. [DOI] [PubMed] [Google Scholar]
  10. Johnson J. D., Snyder C., Walsh M., Flynn M. Effects of myosin light chain kinase and peptides on Ca2+ exchange with the N- and C-terminal Ca2+ binding sites of calmodulin. J Biol Chem. 1996 Jan 12;271(2):761–767. doi: 10.1074/jbc.271.2.761. [DOI] [PubMed] [Google Scholar]
  11. Klee C. B. Conformational transition accompanying the binding of Ca2+ to the protein activator of 3',5'-cyclic adenosine monophosphate phosphodiesterase. Biochemistry. 1977 Mar 8;16(5):1017–1024. doi: 10.1021/bi00624a033. [DOI] [PubMed] [Google Scholar]
  12. Kuboniwa H., Tjandra N., Grzesiek S., Ren H., Klee C. B., Bax A. Solution structure of calcium-free calmodulin. Nat Struct Biol. 1995 Sep;2(9):768–776. doi: 10.1038/nsb0995-768. [DOI] [PubMed] [Google Scholar]
  13. Linse S., Brodin P., Johansson C., Thulin E., Grundström T., Forsén S. The role of protein surface charges in ion binding. Nature. 1988 Oct 13;335(6191):651–652. doi: 10.1038/335651a0. [DOI] [PubMed] [Google Scholar]
  14. Linse S., Helmersson A., Forsén S. Calcium binding to calmodulin and its globular domains. J Biol Chem. 1991 May 5;266(13):8050–8054. [PubMed] [Google Scholar]
  15. Linse S., Johansson C., Brodin P., Grundström T., Drakenberg T., Forsén S. Electrostatic contributions to the binding of Ca2+ in calbindin D9k. Biochemistry. 1991 Jan 8;30(1):154–162. doi: 10.1021/bi00215a023. [DOI] [PubMed] [Google Scholar]
  16. Luby-Phelps K., Hori M., Phelps J. M., Won D. Ca(2+)-regulated dynamic compartmentalization of calmodulin in living smooth muscle cells. J Biol Chem. 1995 Sep 15;270(37):21532–21538. doi: 10.1074/jbc.270.37.21532. [DOI] [PubMed] [Google Scholar]
  17. Martin S. R., Bayley P. M., Brown S. E., Porumb T., Zhang M., Ikura M. Spectroscopic characterization of a high-affinity calmodulin-target peptide hybrid molecule. Biochemistry. 1996 Mar 19;35(11):3508–3517. doi: 10.1021/bi952522a. [DOI] [PubMed] [Google Scholar]
  18. Martin S. R., Maune J. F., Beckingham K., Bayley P. M. Stopped-flow studies of calcium dissociation from calcium-binding-site mutants of Drosophila melanogaster calmodulin. Eur J Biochem. 1992 May 1;205(3):1107–1114. doi: 10.1111/j.1432-1033.1992.tb16879.x. [DOI] [PubMed] [Google Scholar]
  19. Maulet Y., Cox J. A. Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium. Biochemistry. 1983 Nov 22;22(24):5680–5686. doi: 10.1021/bi00293a035. [DOI] [PubMed] [Google Scholar]
  20. Maune J. F., Klee C. B., Beckingham K. Ca2+ binding and conformational change in two series of point mutations to the individual Ca(2+)-binding sites of calmodulin. J Biol Chem. 1992 Mar 15;267(8):5286–5295. [PubMed] [Google Scholar]
  21. Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
  22. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  23. Newton D. L., Oldewurtel M. D., Krinks M. H., Shiloach J., Klee C. B. Agonist and antagonist properties of calmodulin fragments. J Biol Chem. 1984 Apr 10;259(7):4419–4426. [PubMed] [Google Scholar]
  24. O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
  25. Olwin B. B., Storm D. R. Calcium binding to complexes of calmodulin and calmodulin binding proteins. Biochemistry. 1985 Dec 31;24(27):8081–8086. doi: 10.1021/bi00348a037. [DOI] [PubMed] [Google Scholar]
  26. Persechini A., McMillan K., Leakey P. Activation of myosin light chain kinase and nitric oxide synthase activities by calmodulin fragments. J Biol Chem. 1994 Jun 10;269(23):16148–16154. [PubMed] [Google Scholar]
  27. Persechini A., White H. D., Gansz K. J. Different mechanisms for Ca2+ dissociation from complexes of calmodulin with nitric oxide synthase or myosin light chain kinase. J Biol Chem. 1996 Jan 5;271(1):62–67. doi: 10.1074/jbc.271.1.62. [DOI] [PubMed] [Google Scholar]
  28. Porumb T. Determination of calcium-binding constants by flow dialysis. Anal Biochem. 1994 Aug 1;220(2):227–237. doi: 10.1006/abio.1994.1332. [DOI] [PubMed] [Google Scholar]
  29. Rao S. T., Wu S., Satyshur K. A., Ling K. Y., Kung C., Sundaralingam M. Structure of Paramecium tetraurelia calmodulin at 1.8 A resolution. Protein Sci. 1993 Mar;2(3):436–447. doi: 10.1002/pro.5560020316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scholtz J. M., Qian H., York E. J., Stewart J. M., Baldwin R. L. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers. 1991 Nov;31(13):1463–1470. doi: 10.1002/bip.360311304. [DOI] [PubMed] [Google Scholar]
  31. Sekharudu C. Y., Sundaralingam M. A model for the calmodulin-peptide complex based on the troponin C crystal packing and its similarity to the NMR structure of the calmodulin-myosin light chain kinase peptide complex. Protein Sci. 1993 Apr;2(4):620–625. doi: 10.1002/pro.5560020412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Taylor D. A., Sack J. S., Maune J. F., Beckingham K., Quiocho F. A. Structure of a recombinant calmodulin from Drosophila melanogaster refined at 2.2-A resolution. J Biol Chem. 1991 Nov 15;266(32):21375–21380. doi: 10.2210/pdb4cln/pdb. [DOI] [PubMed] [Google Scholar]
  33. Urbauer J. L., Short J. H., Dow L. K., Wand A. J. Structural analysis of a novel interaction by calmodulin: high-affinity binding of a peptide in the absence of calcium. Biochemistry. 1995 Jun 27;34(25):8099–8109. doi: 10.1021/bi00025a016. [DOI] [PubMed] [Google Scholar]
  34. Yazawa M., Ikura M., Hikichi K., Ying L., Yagi K. Communication between two globular domains of calmodulin in the presence of mastoparan or caldesmon fragment. Ca2+ binding and 1H NMR. J Biol Chem. 1987 Aug 15;262(23):10951–10954. [PubMed] [Google Scholar]
  35. Yazawa M., Vorherr T., James P., Carafoli E., Yagi K. Binding of calcium by calmodulin: influence of the calmodulin binding domain of the plasma membrane calcium pump. Biochemistry. 1992 Mar 31;31(12):3171–3176. doi: 10.1021/bi00127a018. [DOI] [PubMed] [Google Scholar]
  36. Zhang M., Tanaka T., Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Biol. 1995 Sep;2(9):758–767. doi: 10.1038/nsb0995-758. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES