Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Jul;5(7):1272–1281. doi: 10.1002/pro.5560050706

Free energy mapping of class I MHC molecules and structural determination of bound peptides.

U Sezerman 1, S Vajda 1, C DeLisi 1
PMCID: PMC2143467  PMID: 8819160

Abstract

Free energy maps of the binding site are constructed for class I major histocompatibility complex (MHC) proteins, by rotating and translating amino acid probes along the cleft, and performing a side-chain conformational search at each position. The free energy maps are used to determine favorable residue positions that are then combined to form docked peptide conformations. Because the generic backbone structural motif of peptides bound to class I MHC is known, the mapping is restricted to appropriate regions of the site, but allows for the sometimes substantial variations in backbone and side-chain conformations. In a test demonstrating the quality of predictions for a known MHC site using only a rotational and conformational search, we started from the crystal structure of the HIV-1 gp120/HLA-A2 complex, and predicted the HLA-A2 bound structures of peptides from the influenza matrix protein, the HIV-1 reverse transcriptase, and the human T cell leukemia virus. The calculated peptides are at 1.6, 1.3, and 1.4 A all-atom RMSDs from their respective crystal structures (Madden DR, Garboczi DN, Wiley DC, 1993). A further test, which also included a local translational search, predicted structures across MHCs. In particular, we obtained the Kb/SEV-9 complex (Fremont DH et al., 1992, Science 257:919-927) starting with the complex between HLA-B27 and a generic peptide (Madden DR, Gorga JC, Strominger JL, Wiley DC, 1991, Nature (Lond) 353:321-325), with an all-atom RMSD of 1.2 A, indicating that the docking procedure is essentially as effective for predictions across MHCs as it is for determinations within the same MHC, although at substantially greater computational cost. The requirements for further improvement in accuracy are identified and discussed briefly.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caflisch A., Miranker A., Karplus M. Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase. J Med Chem. 1993 Jul 23;36(15):2142–2167. doi: 10.1021/jm00067a013. [DOI] [PubMed] [Google Scholar]
  2. Caflisch A., Niederer P., Anliker M. Monte Carlo minimization with thermalization for global optimization of polypeptide conformations in cartesian coordinate space. Proteins. 1992 Sep;14(1):102–109. doi: 10.1002/prot.340140111. [DOI] [PubMed] [Google Scholar]
  3. Cornette J. L., King B. L., Silverman M. D., DeLisi C. Graphical representations of the class I MHC cleft. J Mol Graph. 1993 Sep;11(3):174-9, 187. doi: 10.1016/0263-7855(93)80069-4. [DOI] [PubMed] [Google Scholar]
  4. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  5. Fremont D. H., Matsumura M., Stura E. A., Peterson P. A., Wilson I. A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science. 1992 Aug 14;257(5072):919–927. doi: 10.1126/science.1323877. [DOI] [PubMed] [Google Scholar]
  6. Goodsell D. S., Olson A. J. Automated docking of substrates to proteins by simulated annealing. Proteins. 1990;8(3):195–202. doi: 10.1002/prot.340080302. [DOI] [PubMed] [Google Scholar]
  7. Hart T. N., Read R. J. A multiple-start Monte Carlo docking method. Proteins. 1992 Jul;13(3):206–222. doi: 10.1002/prot.340130304. [DOI] [PubMed] [Google Scholar]
  8. Krystek S., Stouch T., Novotny J. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures. J Mol Biol. 1993 Dec 5;234(3):661–679. doi: 10.1006/jmbi.1993.1619. [DOI] [PubMed] [Google Scholar]
  9. Madden D. R., Garboczi D. N., Wiley D. C. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell. 1993 Nov 19;75(4):693–708. doi: 10.1016/0092-8674(93)90490-h. [DOI] [PubMed] [Google Scholar]
  10. Madden D. R., Gorga J. C., Strominger J. L., Wiley D. C. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature. 1991 Sep 26;353(6342):321–325. doi: 10.1038/353321a0. [DOI] [PubMed] [Google Scholar]
  11. Miranker A., Karplus M. Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins. 1991;11(1):29–34. doi: 10.1002/prot.340110104. [DOI] [PubMed] [Google Scholar]
  12. Novotny J., Bruccoleri R. E., Saul F. A. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry. 1989 May 30;28(11):4735–4749. doi: 10.1021/bi00437a034. [DOI] [PubMed] [Google Scholar]
  13. Rammensee H. G., Friede T., Stevanoviíc S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41(4):178–228. doi: 10.1007/BF00172063. [DOI] [PubMed] [Google Scholar]
  14. Rosenfeld R., Zheng Q., Vajda S., DeLisi C. Computing the structure of bound peptides. Application to antigen recognition by class I major histocompatibility complex receptors. J Mol Biol. 1993 Dec 5;234(3):515–521. doi: 10.1006/jmbi.1993.1607. [DOI] [PubMed] [Google Scholar]
  15. Rotstein S. H., Murcko M. A. GroupBuild: a fragment-based method for de novo drug design. J Med Chem. 1993 Jun 11;36(12):1700–1710. doi: 10.1021/jm00064a003. [DOI] [PubMed] [Google Scholar]
  16. Sezerman U., Vajda S., Cornette J., DeLisi C. Toward computational determination of peptide-receptor structure. Protein Sci. 1993 Nov;2(11):1827–1843. doi: 10.1002/pro.5560021105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vasmatzis G., Brower R., Delisi C. Predicting immunoglobulin-like hypervariable loops. Biopolymers. 1994 Dec;34(12):1669–1680. doi: 10.1002/bip.360341211. [DOI] [PubMed] [Google Scholar]
  18. Yue S. Y. Distance-constrained molecular docking by simulated annealing. Protein Eng. 1990 Dec;4(2):177–184. doi: 10.1093/protein/4.2.177. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES