Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Aug;5(8):1633–1647. doi: 10.1002/pro.5560050817

Three-dimensional structure of the complexes of ribonuclease A with 2',5'-CpA and 3',5'-d(CpA) in aqueous solution, as obtained by NMR and restrained molecular dynamics.

C Toiron 1, C González 1, M Bruix 1, M Rico 1
PMCID: PMC2143484  PMID: 8844852

Abstract

The three-dimensional structure of the complexes of ribonuclease A with cytidyl-2',5'-adenosine (2',5'-CpA) and deoxycytidyl-3',5'-deoxyadenosine [3',5'-d(CpA)] in aqueous solution has been determined by 1H NMR methods in combination with restrained molecular dynamics calculations. Twenty-three intermolecular NOE cross-corrections for the 3',5'-d(CpA) complex and 19 for the 2',5'-CpA, together with about 1,000 intramolecular NOEs assigned for each complex, were translated into distance constraints and used in the calculation. No significant changes in the global structure of the enzyme occur upon complex formation. The side chains of His 12, Thr 45, His 119, and the amide backbone group of Phe 120 are involved directly in the binding of the ligands at the active site. The conformation of the two bases is anti in the two complexes, but differs from the crystal structure in the conformation of the two sugar rings in 3',5'-d(CpA), shown to be in the S-type region, as deduced from an analysis of couplings between the ribose protons. His 119 is found in the two complexes in only one conformation, corresponding to position A in the free protein. Side chains of Asn 67, Gln 69, Asn 71, and Glu 111 from transient hydrogen bonds with the adenine base, showing the existence of a pronounced flexibility of these enzyme side chains at the binding site of the downstream adenine. All other general features on the structures coincide clearly with those observed in the crystal state.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar C. F., Thomas P. J., Moss D. S., Mills A., Palmer R. A. Novel non-productively bound ribonuclease inhibitor complexes--high resolution X-ray refinement studies on the binding of RNase-A to cytidylyl-2',5'-guanosine (2',5'CpG) and deoxycytidylyl-3',5'-guanosine (3',5'dCpdG). Biochim Biophys Acta. 1991 Dec 11;1118(1):6–20. doi: 10.1016/0167-4838(91)90435-3. [DOI] [PubMed] [Google Scholar]
  2. Borkakoti N., Palmer R. A., Haneef I., Moss D. S. Specificity of pancreatic ribonuclease-A. An X-ray study of a protein-nucleotide complex. J Mol Biol. 1983 Sep 25;169(3):743–755. doi: 10.1016/s0022-2836(83)80168-5. [DOI] [PubMed] [Google Scholar]
  3. CRESTFIELD A. M., STEIN W. H., MOORE S. Alkylation and identification of the histidine residues at the active site of ribonuclease. J Biol Chem. 1963 Jul;238:2413–2419. [PubMed] [Google Scholar]
  4. Findlay D., Herries D. G., Mathias A. P., Rabin B. R., Ross C. A. The active site and mechanism of action of bovine pancreatic ribonuclease. 7. The catalytic mechanism. Biochem J. 1962 Oct;85(1):152–153. doi: 10.1042/bj0850152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fontecilla-Camps J. C., de Llorens R., le Du M. H., Cuchillo C. M. Crystal structure of ribonuclease A.d(ApTpApApG) complex. Direct evidence for extended substrate recognition. J Biol Chem. 1994 Aug 26;269(34):21526–21531. doi: 10.2210/pdb1rcn/pdb. [DOI] [PubMed] [Google Scholar]
  6. Haar W., Maurer W., Rüterjans H. Proton-magnetic-resonance studies of complexes of pancreatic ribonuclease A with pyrimidine and purine nucleotides. Eur J Biochem. 1974 May 2;44(1):201–211. doi: 10.1111/j.1432-1033.1974.tb03474.x. [DOI] [PubMed] [Google Scholar]
  7. Hahn U., Desai-Hahn R., Rüterjans H. 1H and 15N NMR investigation of the interaction of pyrimidine nucleotides with ribonuclease A. Eur J Biochem. 1985 Feb 1;146(3):705–712. doi: 10.1111/j.1432-1033.1985.tb08708.x. [DOI] [PubMed] [Google Scholar]
  8. Hahn U., Rüterjans H. Two-dimensional 1H NMR investigation of ribonuclease A and ribonuclease-A--pyrimidine-nucleotide complexes. Eur J Biochem. 1985 Oct 15;152(2):481–491. doi: 10.1111/j.1432-1033.1985.tb09222.x. [DOI] [PubMed] [Google Scholar]
  9. Hirs C. H., Halmann M., Kycia J. H. Dinitrophenylation and inactivation of bovine pancreatic ribonuclease A. Arch Biochem Biophys. 1965 Jul;111(1):209–222. doi: 10.1016/0003-9861(65)90343-7. [DOI] [PubMed] [Google Scholar]
  10. Howlin B., Harris G. W., Moss D. S., Palmer R. A. X-ray refinement study on the binding of cytidylic acid (2'-CMP) to ribonuclease A. J Mol Biol. 1987 Jul 5;196(1):159–164. doi: 10.1016/0022-2836(87)90518-3. [DOI] [PubMed] [Google Scholar]
  11. Lisgarten J. N., Gupta V., Maes D., Wyns L., Zegers I., Palmer R. A., Dealwis C. G., Aguilar C. F., Hemmings A. M. Structure of the crystalline complex of cytidylic acid (2'-CMP) with ribonuclease at 1.6 A resolution. Conservation of solvent sites in RNase-A high-resolution structures. Acta Crystallogr D Biol Crystallogr. 1993 Nov 1;49(Pt 6):541–547. doi: 10.1107/S090744499300719X. [DOI] [PubMed] [Google Scholar]
  12. Listgarten J. N., Maes D., Wyns L., Aguilar C. F., Palmer R. A. Structure of the crystalline complex of deoxycytidylyl-3',5'-guanosine (3',5'-dCpdG) cocrystallized with ribonuclease at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr. 1995 Sep 1;51(Pt 5):767–771. doi: 10.1107/S0907444995001570. [DOI] [PubMed] [Google Scholar]
  13. Pavlovsky A. G., Borisova S. N., Borisov V. V., Antonov I. V., Karpeisky M. Y. The structure of the complex of ribonuclease S with fluoride analogue of UpA at 2.5 A resolution. FEBS Lett. 1978 Aug 15;92(2):258–262. doi: 10.1016/0014-5793(78)80766-2. [DOI] [PubMed] [Google Scholar]
  14. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  15. Rico M., Bruix M., Santoro J., Gonzalez C., Neira J. L., Nieto J. L., Herranz J. Sequential 1H-NMR assignment and solution structure of bovine pancreatic ribonuclease A. Eur J Biochem. 1989 Aug 15;183(3):623–638. doi: 10.1111/j.1432-1033.1989.tb21092.x. [DOI] [PubMed] [Google Scholar]
  16. Rico M., Santoro J., González C., Bruix M., Neira J. L., Nieto J. L., Herranz J. 3D structure of bovine pancreatic ribonuclease A in aqueous solution: an approach to tertiary structure determination from a small basis of 1H NMR NOE correlations. J Biomol NMR. 1991 Sep;1(3):283–298. doi: 10.1007/BF01875521. [DOI] [PubMed] [Google Scholar]
  17. Robertson A. D., Purisima E. O., Eastman M. A., Scheraga H. A. Proton NMR assignments and regular backbone structure of bovine pancreatic ribonuclease A in aqueous solution. Biochemistry. 1989 Jul 11;28(14):5930–5938. doi: 10.1021/bi00440a033. [DOI] [PubMed] [Google Scholar]
  18. Santoro J., González C., Bruix M., Neira J. L., Nieto J. L., Herranz J., Rico M. High-resolution three-dimensional structure of ribonuclease A in solution by nuclear magnetic resonance spectroscopy. J Mol Biol. 1993 Feb 5;229(3):722–734. doi: 10.1006/jmbi.1993.1075. [DOI] [PubMed] [Google Scholar]
  19. Wlodawer A., Miller M., Sjölin L. Active site of RNase: neutron diffraction study of a complex with uridine vanadate, a transition-state analog. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3628–3631. doi: 10.1073/pnas.80.12.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wlodawer A., Svensson L. A., Sjölin L., Gilliland G. L. Structure of phosphate-free ribonuclease A refined at 1.26 A. Biochemistry. 1988 Apr 19;27(8):2705–2717. doi: 10.1021/bi00408a010. [DOI] [PubMed] [Google Scholar]
  21. Wodak S. Y. The structure of cytidilyl(2',5')adenosine when bound to pancreatic ribonuclease S. J Mol Biol. 1977 Nov;116(4):855–875. doi: 10.1016/0022-2836(77)90275-3. [DOI] [PubMed] [Google Scholar]
  22. Zegers I., Maes D., Dao-Thi M. H., Poortmans F., Palmer R., Wyns L. The structures of RNase A complexed with 3'-CMP and d(CpA): active site conformation and conserved water molecules. Protein Sci. 1994 Dec;3(12):2322–2339. doi: 10.1002/pro.5560031217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. de Llorens R., Arús C., Parés X., Cuchillo C. M. Chemical and computer graphics studies on the topography of the ribonuclease A active site cleft. A model of the enzyme-pentanucleotide substrate complex. Protein Eng. 1989 Mar;2(6):417–429. doi: 10.1093/protein/2.6.417. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES