Abstract
The structure of a symmetric T3R3f insulin hexamer, complexed with 4-hydroxybenzamide, has been determined using X-ray crystallographic techniques. Data were measured from six crystals grown in microgravity to a resolution of 1.4 A and the structure has been refined including the contributions from hydrogen atoms. The crystals are isomorphous with T3R3f complexes of phenolic derivatives as well as with uncomplexed forms. Unlike the structures of complexes with phenol, m-cresol, resorcinol, 4'-hydroxyacetanilide, and methylparaben, which bind one phenolic derivative molecule per R- or Rf-state monomer, two molecules of 4-hydroxybenzamide are bound by each Rf-state monomer. The presence of the second guest molecule results in an extensive hydrogen bonding network, mediated by water molecules, between the T- and Rf-state trimers and adds stability to the formation of the hexamer. The only access to these second sites is through three symmetry-related, narrow channels that originate on the surface of the T-state trimer. Although the conformation of the backbone atoms of the monomers is nearly identical to that of other T3R3f hexamers, significant changes are observed in the conformations of side chains in the vicinity of the second binding site. The side chain of the T-state A11 Cys residue, which forms a disulfide bond to A6 Cys in the same monomer, is observed in two discrete conformations; two discrete conformations are also present for the entire A8 Thr residue in the Rf-state monomer. A procedure is also described for an alternate method of interframe scaling and merging intensity data from an image plate detector.
Full Text
The Full Text of this article is available as a PDF (5.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker E. N., Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. M., Hubbard R. E., Isaacs N. W., Reynolds C. D. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1195):369–456. doi: 10.1098/rstb.1988.0058. [DOI] [PubMed] [Google Scholar]
- Brzović P. S., Choi W. E., Borchardt D., Kaarsholm N. C., Dunn M. F. Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer. Biochemistry. 1994 Nov 8;33(44):13057–13069. doi: 10.1021/bi00248a015. [DOI] [PubMed] [Google Scholar]
- Choi W. E., Brader M. L., Aguilar V., Kaarsholm N. C., Dunn M. F. The allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions. Biochemistry. 1993 Nov 2;32(43):11638–11645. doi: 10.1021/bi00094a021. [DOI] [PubMed] [Google Scholar]
- Ciszak E., Beals J. M., Frank B. H., Baker J. C., Carter N. D., Smith G. D. Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin. Structure. 1995 Jun 15;3(6):615–622. doi: 10.1016/s0969-2126(01)00195-2. [DOI] [PubMed] [Google Scholar]
- Ciszak E., Smith G. D. Crystallographic evidence for dual coordination around zinc in the T3R3 human insulin hexamer. Biochemistry. 1994 Feb 15;33(6):1512–1517. doi: 10.1021/bi00172a030. [DOI] [PubMed] [Google Scholar]
- Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Reynolds C. D., Smith G. D., Sparks C., Swenson D. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature. 1989 Apr 13;338(6216):594–596. doi: 10.1038/338594a0. [DOI] [PubMed] [Google Scholar]
- Grau U., Saudek C. D. Stable insulin preparation for implanted insulin pumps. Laboratory and animal trials. Diabetes. 1987 Dec;36(12):1453–1459. doi: 10.2337/diab.36.12.1453. [DOI] [PubMed] [Google Scholar]
- Kaarsholm N. C., Ko H. C., Dunn M. F. Comparison of solution structural flexibility and zinc binding domains for insulin, proinsulin, and miniproinsulin. Biochemistry. 1989 May 16;28(10):4427–4435. doi: 10.1021/bi00436a046. [DOI] [PubMed] [Google Scholar]
- Krüger P., Gilge G., Cabuk Y., Wollmer A. Cooperativity and intermediate states in the T----R-structural transformation of insulin. Biol Chem Hoppe Seyler. 1990 Aug;371(8):669–673. doi: 10.1515/bchm3.1990.371.2.669. [DOI] [PubMed] [Google Scholar]
- Smith G. D., Ciszak E. The structure of a complex of hexameric insulin and 4'-hydroxyacetanilide. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8851–8855. doi: 10.1073/pnas.91.19.8851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith G. D., Dodson G. G. Structure of a rhombohedral R6 insulin/phenol complex. Proteins. 1992 Nov;14(3):401–408. doi: 10.1002/prot.340140309. [DOI] [PubMed] [Google Scholar]
- Smith G. D., Swenson D. C., Dodson E. J., Dodson G. G., Reynolds C. D. Structural stability in the 4-zinc human insulin hexamer. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7093–7097. doi: 10.1073/pnas.81.22.7093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittingham J. L., Chaudhuri S., Dodson E. J., Moody P. C., Dodson G. G. X-ray crystallographic studies on hexameric insulins in the presence of helix-stabilizing agents, thiocyanate, methylparaben, and phenol. Biochemistry. 1995 Nov 28;34(47):15553–15563. doi: 10.1021/bi00047a022. [DOI] [PubMed] [Google Scholar]