Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jan;6(1):89–98. doi: 10.1002/pro.5560060110

Importance of the release of strand 1C to the polymerization mechanism of inhibitory serpins.

W S Chang 1, J Whisstock 1, P C Hopkins 1, A M Lesk 1, R W Carrell 1, M R Wardell 1
PMCID: PMC2143506  PMID: 9007980

Abstract

Serpin polymerization is the underlying cause of several diseases, including thromboembolism, emphysema, liver cirrhosis, and angioedema. Understanding the structure of the polymers and the mechanism of polymerization is necessary to support rational design of therapeutic agents. Here we show that polymerization of antithrombin is sensitive to the addition of synthetic peptides that interact with the structure. A 12-m34 peptide (homologous to P14-P3 of antithrombin reactive loop), representing the entire length of s4A, prevented polymerization totally. A 6-mer peptide (homologous to P14-P9 of antithrombin) not only allowed polymerization to occur, but induced it. This effect could be blocked by the addition of a 5-mer peptide with s1C sequence of antithrombin or by an unrelated peptide representing residues 26-31 of cholecystokinin. The s1C or cholecystokinin peptide alone was unable to form a complex with native antithrombin. Moreover, an active antitrypsin double mutant, Pro 361-->Cys, Ser 283-->Cys, was engineered for the purpose of forming a disulfide bond between s1C and s2C to prevent movement of s1C. This mutant was resistant to polymerization if the disulfide bridge was intact, but, under reducing conditions, it regained the potential to polymerize. We have also modeled long-chain serpin polymers with acceptable stereochemistry using two previously proposed loop-A-sheet and loop-C-sheet polymerization mechanisms and have shown both to be sterically feasible, as are "mixed" linear polymers. We therefore conclude that the release of strand 1C must be an element of the mechanism of serpin polymerization.

Full Text

The Full Text of this article is available as a PDF (7.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann U., Bode W., Huber R., Travis J., Potempa J. Crystal structure of cleaved equine leucocyte elastase inhibitor determined at 1.95 A resolution. J Mol Biol. 1992 Aug 20;226(4):1207–1218. doi: 10.1016/0022-2836(92)91062-t. [DOI] [PubMed] [Google Scholar]
  2. Baumann U., Huber R., Bode W., Grosse D., Lesjak M., Laurell C. B. Crystal structure of cleaved human alpha 1-antichymotrypsin at 2.7 A resolution and its comparison with other serpins. J Mol Biol. 1991 Apr 5;218(3):595–606. doi: 10.1016/0022-2836(91)90704-a. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Björk I., Ylinenjärvi K., Olson S. T., Bock P. E. Conversion of antithrombin from an inhibitor of thrombin to a substrate with reduced heparin affinity and enhanced conformational stability by binding of a tetradecapeptide corresponding to the P1 to P14 region of the putative reactive bond loop of the inhibitor. J Biol Chem. 1992 Jan 25;267(3):1976–1982. [PubMed] [Google Scholar]
  5. Bruce D., Perry D. J., Borg J. Y., Carrell R. W., Wardell M. R. Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen-VI (187 Asn-->Asp) J Clin Invest. 1994 Dec;94(6):2265–2274. doi: 10.1172/JCI117589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carrell R. W., Stein P. E., Fermi G., Wardell M. R. Biological implications of a 3 A structure of dimeric antithrombin. Structure. 1994 Apr 15;2(4):257–270. doi: 10.1016/s0969-2126(00)00028-9. [DOI] [PubMed] [Google Scholar]
  7. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  8. Elliott P. R., Lomas D. A., Carrell R. W., Abrahams J. P. Inhibitory conformation of the reactive loop of alpha 1-antitrypsin. Nat Struct Biol. 1996 Aug;3(8):676–681. doi: 10.1038/nsb0896-676. [DOI] [PubMed] [Google Scholar]
  9. Faber J. P., Poller W., Olek K., Baumann U., Carlson J., Lindmark B., Eriksson S. The molecular basis of alpha 1-antichymotrypsin deficiency in a heterozygote with liver and lung disease. J Hepatol. 1993 Jul;18(3):313–321. doi: 10.1016/s0168-8278(05)80275-2. [DOI] [PubMed] [Google Scholar]
  10. Gettins P., Patston P. A., Schapira M. The role of conformational change in serpin structure and function. Bioessays. 1993 Jul;15(7):461–467. doi: 10.1002/bies.950150705. [DOI] [PubMed] [Google Scholar]
  11. Hopkins P. C., Stone S. R. The contribution of the conserved hinge region residues of alpha1-antitrypsin to its reaction with elastase. Biochemistry. 1995 Dec 5;34(48):15872–15879. doi: 10.1021/bi00048a033. [DOI] [PubMed] [Google Scholar]
  12. Huber R., Carrell R. W. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry. 1989 Nov 14;28(23):8951–8966. doi: 10.1021/bi00449a001. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lesk A. M. Macromolecular marionettes. Comput Biol Med. 1977 Apr;7(2):113–129. doi: 10.1016/0010-4825(77)90017-8. [DOI] [PubMed] [Google Scholar]
  15. Lomas D. A., Elliott P. R., Sidhar S. K., Foreman R. C., Finch J. T., Cox D. W., Whisstock J. C., Carrell R. W. alpha 1-Antitrypsin Mmalton (Phe52-deleted) forms loop-sheet polymers in vivo. Evidence for the C sheet mechanism of polymerization. J Biol Chem. 1995 Jul 14;270(28):16864–16870. doi: 10.1074/jbc.270.28.16864. [DOI] [PubMed] [Google Scholar]
  16. Lomas D. A., Evans D. L., Stone S. R., Chang W. S., Carrell R. W. Effect of the Z mutation on the physical and inhibitory properties of alpha 1-antitrypsin. Biochemistry. 1993 Jan 19;32(2):500–508. doi: 10.1021/bi00053a014. [DOI] [PubMed] [Google Scholar]
  17. Lomas D. A., Finch J. T., Seyama K., Nukiwa T., Carrell R. W. Alpha 1-antitrypsin Siiyama (Ser53-->Phe). Further evidence for intracellular loop-sheet polymerization. J Biol Chem. 1993 Jul 25;268(21):15333–15335. [PubMed] [Google Scholar]
  18. Mast A. E., Enghild J. J., Salvesen G. Conformation of the reactive site loop of alpha 1-proteinase inhibitor probed by limited proteolysis. Biochemistry. 1992 Mar 17;31(10):2720–2728. doi: 10.1021/bi00125a012. [DOI] [PubMed] [Google Scholar]
  19. McKay E. J. A simple two-step procedure for the isolation of antithrombin III from biological fluids. 1981 Feb 15-Mar 1Thromb Res. 21(4-5):375–382. doi: 10.1016/0049-3848(81)90138-9. [DOI] [PubMed] [Google Scholar]
  20. Mikus P., Urano T., Liljeström P., Ny T. Plasminogen-activator inhibitor type 2 (PAI-2) is a spontaneously polymerising SERPIN. Biochemical characterisation of the recombinant intracellular and extracellular forms. Eur J Biochem. 1993 Dec 15;218(3):1071–1082. doi: 10.1111/j.1432-1033.1993.tb18467.x. [DOI] [PubMed] [Google Scholar]
  21. Mourey L., Samama J. P., Delarue M., Petitou M., Choay J., Moras D. Crystal structure of cleaved bovine antithrombin III at 3.2 A resolution. J Mol Biol. 1993 Jul 5;232(1):223–241. doi: 10.1006/jmbi.1993.1378. [DOI] [PubMed] [Google Scholar]
  22. Stein P. E., Carrell R. W. What do dysfunctional serpins tell us about molecular mobility and disease? Nat Struct Biol. 1995 Feb;2(2):96–113. doi: 10.1038/nsb0295-96. [DOI] [PubMed] [Google Scholar]
  23. Stein P. E., Leslie A. G., Finch J. T., Turnell W. G., McLaughlin P. J., Carrell R. W. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature. 1990 Sep 6;347(6288):99–102. doi: 10.1038/347099a0. [DOI] [PubMed] [Google Scholar]
  24. Stein P., Chothia C. Serpin tertiary structure transformation. J Mol Biol. 1991 Sep 20;221(2):615–621. doi: 10.1016/0022-2836(91)80076-7. [DOI] [PubMed] [Google Scholar]
  25. Wu Y., Foreman R. C. The effect of amino acid substitutions at position 342 on the secretion of human alpha 1-antitrypsin from Xenopus oocytes. FEBS Lett. 1990 Jul 30;268(1):21–23. doi: 10.1016/0014-5793(90)80962-i. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES