Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jan;6(1):162–174. doi: 10.1002/pro.5560060119

Conformational analysis of peptides corresponding to all the secondary structure elements of protein L B1 domain: secondary structure propensities are not conserved in proteins with the same fold.

M Ramírez-Alvarado 1, L Serrano 1, F J Blanco 1
PMCID: PMC2143513  PMID: 9007989

Abstract

The solution conformation of three peptides corresponding to the two beta-hairpins and the alpha-helix of the protein L B1 domain have been analyzed by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). In aqueous solution, the three peptides show low populations of native and non-native locally folded structures, but no well-defined hairpin or helix structures are formed. In 30% aqueous trifluoroethanol (TFE), the peptide corresponding to the alpha-helix adopts a high populated helical conformation three residues longer than in the protein. The hairpin peptides aggregate in TFE, and no significant conformational change occurs in the NMR observable fraction of molecules. These results indicate that the helical peptide has a significant intrinsic tendency to adopt its native structure and that the hairpin sequences seem to be selected as non-helical. This suggests that these sequences favor the structure finally attained in the protein, but the contribution of the local interactions alone is not enough to drive the formation of a detectable population of native secondary structures. This pattern of secondary structure tendencies is different to those observed in two structurally related proteins: ubiquitin and the protein G B1 domain. The only common feature is a certain propensity of the helical segments to form the native structure. These results indicate that for a protein to fold, there is no need for large native-like secondary structure propensities, although a minimum tendency to avoid non-native structures and to favor native ones could be required.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander P., Orban J., Bryan P. Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G. Biochemistry. 1992 Aug 18;31(32):7243–7248. doi: 10.1021/bi00147a006. [DOI] [PubMed] [Google Scholar]
  2. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  3. Barchi J. J., Jr, Grasberger B., Gronenborn A. M., Clore G. M. Investigation of the backbone dynamics of the IgG-binding domain of streptococcal protein G by heteronuclear two-dimensional 1H-15N nuclear magnetic resonance spectroscopy. Protein Sci. 1994 Jan;3(1):15–21. doi: 10.1002/pro.5560030103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanco F. J., Jiménez M. A., Pineda A., Rico M., Santoro J., Nieto J. L. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry. 1994 May 17;33(19):6004–6014. doi: 10.1021/bi00185a041. [DOI] [PubMed] [Google Scholar]
  5. Blanco F. J., Serrano L. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Eur J Biochem. 1995 Jun 1;230(2):634–649. doi: 10.1111/j.1432-1033.1995.tb20605.x. [DOI] [PubMed] [Google Scholar]
  6. Brown J. E., Klee W. A. Helix-coil transition of the isolated amino terminus of ribonuclease. Biochemistry. 1971 Feb 2;10(3):470–476. doi: 10.1021/bi00779a019. [DOI] [PubMed] [Google Scholar]
  7. Bryngelson J. D., Onuchic J. N., Socci N. D., Wolynes P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 1995 Mar;21(3):167–195. doi: 10.1002/prot.340210302. [DOI] [PubMed] [Google Scholar]
  8. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  9. Cox J. P., Evans P. A., Packman L. C., Williams D. H., Woolfson D. N. Dissecting the structure of a partially folded protein. Circular dichroism and nuclear magnetic resonance studies of peptides from ubiquitin. J Mol Biol. 1993 Nov 20;234(2):483–492. doi: 10.1006/jmbi.1993.1600. [DOI] [PubMed] [Google Scholar]
  10. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  11. Dyson H. J., Merutka G., Waltho J. P., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. J Mol Biol. 1992 Aug 5;226(3):795–817. doi: 10.1016/0022-2836(92)90633-u. [DOI] [PubMed] [Google Scholar]
  12. Dyson H. J., Rance M., Houghten R. A., Lerner R. A., Wright P. E. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J Mol Biol. 1988 May 5;201(1):161–200. doi: 10.1016/0022-2836(88)90446-9. [DOI] [PubMed] [Google Scholar]
  13. Dyson H. J., Sayre J. R., Merutka G., Shin H. C., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin. J Mol Biol. 1992 Aug 5;226(3):819–835. doi: 10.1016/0022-2836(92)90634-v. [DOI] [PubMed] [Google Scholar]
  14. Dyson H. J., Wright P. E. Defining solution conformations of small linear peptides. Annu Rev Biophys Biophys Chem. 1991;20:519–538. doi: 10.1146/annurev.bb.20.060191.002511. [DOI] [PubMed] [Google Scholar]
  15. Fersht A. R. Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10869–10873. doi: 10.1073/pnas.92.24.10869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  17. Govindarajan S., Goldstein R. A. Optimal local propensities for model proteins. Proteins. 1995 Aug;22(4):413–418. doi: 10.1002/prot.340220411. [DOI] [PubMed] [Google Scholar]
  18. Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., Clore G. M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991 Aug 9;253(5020):657–661. doi: 10.1126/science.1871600. [DOI] [PubMed] [Google Scholar]
  19. Gu H., Yi Q., Bray S. T., Riddle D. S., Shiau A. K., Baker D. A phage display system for studying the sequence determinants of protein folding. Protein Sci. 1995 Jun;4(6):1108–1117. doi: 10.1002/pro.5560040609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jimenez M. A., Bruix M., Gonzalez C., Blanco F. J., Nieto J. L., Herranz J., Rico M. CD and 1H-NMR studies on the conformational properties of peptide fragments from the C-terminal domain of thermolysin. Eur J Biochem. 1993 Feb 1;211(3):569–581. doi: 10.1111/j.1432-1033.1993.tb17584.x. [DOI] [PubMed] [Google Scholar]
  21. Jiménez M. A., Muñoz V., Rico M., Serrano L. Helix stop and start signals in peptides and proteins. The capping box does not necessarily prevent helix elongation. J Mol Biol. 1994 Sep 30;242(4):487–496. doi: 10.1006/jmbi.1994.1596. [DOI] [PubMed] [Google Scholar]
  22. Jiménez M. A., Nieto J. L., Herranz J., Rico M., Santoro J. 1H NMR and CD evidence of the folding of the isolated ribonuclease 50-61 fragment. FEBS Lett. 1987 Sep 14;221(2):320–324. doi: 10.1016/0014-5793(87)80948-1. [DOI] [PubMed] [Google Scholar]
  23. Kemmink J., Creighton T. E. Local conformations of peptides representing the entire sequence of bovine pancreatic trypsin inhibitor and their roles in folding. J Mol Biol. 1993 Dec 5;234(3):861–878. doi: 10.1006/jmbi.1993.1631. [DOI] [PubMed] [Google Scholar]
  24. Kemmink J., van Mierlo C. P., Scheek R. M., Creighton T. E. Local structure due to an aromatic-amide interaction observed by 1H-nuclear magnetic resonance spectroscopy in peptides related to the N terminus of bovine pancreatic trypsin inhibitor. J Mol Biol. 1993 Mar 5;230(1):312–322. doi: 10.1006/jmbi.1993.1144. [DOI] [PubMed] [Google Scholar]
  25. Kraulis P. J. Similarity of protein G and ubiquitin. Science. 1991 Oct 25;254(5031):581–582. doi: 10.1126/science.1658931. [DOI] [PubMed] [Google Scholar]
  26. Kuprin S., Gräslund A., Ehrenberg A., Koch M. H. Nonideality of water-hexafluoropropanol mixtures as studied by X-ray small angle scattering. Biochem Biophys Res Commun. 1995 Dec 26;217(3):1151–1156. doi: 10.1006/bbrc.1995.2889. [DOI] [PubMed] [Google Scholar]
  27. Kuroda Y. Residual helical structure in the C-terminal fragment of cytochrome c. Biochemistry. 1993 Feb 9;32(5):1219–1224. doi: 10.1021/bi00056a004. [DOI] [PubMed] [Google Scholar]
  28. Muñoz V., Blanco F. J., Serrano L. The distribution of alpha-helix propensity along the polypeptide chain is not conserved in proteins from the same family. Protein Sci. 1995 Aug;4(8):1577–1586. doi: 10.1002/pro.5560040816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Muñoz V., Cronet P., López-Hernández E., Serrano L. Analysis of the effect of local interactions on protein stability. Fold Des. 1996;1(3):167–178. doi: 10.1016/s1359-0278(96)00029-6. [DOI] [PubMed] [Google Scholar]
  30. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J Mol Biol. 1995 Jan 20;245(3):275–296. doi: 10.1006/jmbi.1994.0023. [DOI] [PubMed] [Google Scholar]
  31. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol. 1994 Jun;1(6):399–409. doi: 10.1038/nsb0694-399. [DOI] [PubMed] [Google Scholar]
  32. Nelson J. W., Kallenbach N. R. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol. Proteins. 1986 Nov;1(3):211–217. doi: 10.1002/prot.340010303. [DOI] [PubMed] [Google Scholar]
  33. O'Neil K. T., Hoess R. H., Raleigh D. P., DeGrado W. F. Thermodynamic genetics of the folding of the B1 immunoglobulin-binding domain from streptococcal protein G. Proteins. 1995 Jan;21(1):11–21. doi: 10.1002/prot.340210103. [DOI] [PubMed] [Google Scholar]
  34. Ramírez-Alvarado M., Blanco F. J., Serrano L. De novo design and structural analysis of a model beta-hairpin peptide system. Nat Struct Biol. 1996 Jul;3(7):604–612. doi: 10.1038/nsb0796-604. [DOI] [PubMed] [Google Scholar]
  35. Rizo J., Blanco F. J., Kobe B., Bruch M. D., Gierasch L. M. Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments. Biochemistry. 1993 May 11;32(18):4881–4894. doi: 10.1021/bi00069a025. [DOI] [PubMed] [Google Scholar]
  36. Sauer-Eriksson A. E., Kleywegt G. J., Uhlén M., Jones T. A. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure. 1995 Mar 15;3(3):265–278. doi: 10.1016/s0969-2126(01)00157-5. [DOI] [PubMed] [Google Scholar]
  37. Searle M. S., Williams D. H., Packman L. C. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native beta-hairpin. Nat Struct Biol. 1995 Nov;2(11):999–1006. doi: 10.1038/nsb1195-999. [DOI] [PubMed] [Google Scholar]
  38. Searle M. S., Zerella R., Williams D. H., Packman L. C. Native-like beta-hairpin structure in an isolated fragment from ferredoxin: NMR and CD studies of solvent effects on the N-terminal 20 residues. Protein Eng. 1996 Jul;9(7):559–565. doi: 10.1093/protein/9.7.559. [DOI] [PubMed] [Google Scholar]
  39. Segawa S., Fukuno T., Fujiwara K., Noda Y. Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation: helix-forming or -breaking propensity of peptide segments. Biopolymers. 1991 Apr;31(5):497–509. doi: 10.1002/bip.360310505. [DOI] [PubMed] [Google Scholar]
  40. Shin H. C., Merutka G., Waltho J. P., Wright P. E., Dyson H. J. Peptide models of protein folding initiation sites. 2. The G-H turn region of myoglobin acts as a helix stop signal. Biochemistry. 1993 Jun 29;32(25):6348–6355. doi: 10.1021/bi00076a007. [DOI] [PubMed] [Google Scholar]
  41. Sönnichsen F. D., Van Eyk J. E., Hodges R. S., Sykes B. D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry. 1992 Sep 22;31(37):8790–8798. doi: 10.1021/bi00152a015. [DOI] [PubMed] [Google Scholar]
  42. Tamburro A. M., Scatturin A., Rocchi R., Marchiori F., Borin G., Scoffone E. Conformational-transitions of bovine pancreatic ribonuclease S-peptide. FEBS Lett. 1968 Oct;1(5):298–300. doi: 10.1016/0014-5793(68)80137-1. [DOI] [PubMed] [Google Scholar]
  43. Vijay-Kumar S., Bugg C. E., Wilkinson K. D., Vierstra R. D., Hatfield P. M., Cook W. J. Comparison of the three-dimensional structures of human, yeast, and oat ubiquitin. J Biol Chem. 1987 May 5;262(13):6396–6399. [PubMed] [Google Scholar]
  44. Waltho J. P., Feher V. A., Merutka G., Dyson H. J., Wright P. E. Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helices of myoglobin. Biochemistry. 1993 Jun 29;32(25):6337–6347. doi: 10.1021/bi00076a006. [DOI] [PubMed] [Google Scholar]
  45. Wikström M., Drakenberg T., Forsén S., Sjöbring U., Björck L. Three-dimensional solution structure of an immunoglobulin light chain-binding domain of protein L. Comparison with the IgG-binding domains of protein G. Biochemistry. 1994 Nov 29;33(47):14011–14017. doi: 10.1021/bi00251a008. [DOI] [PubMed] [Google Scholar]
  46. Wikström M., Forsén S., Drakenberg T. Backbone dynamics of a domain of protein L which binds to immunoglobulin light chains. Eur J Biochem. 1996 Feb 1;235(3):543–548. doi: 10.1111/j.1432-1033.1996.00543.x. [DOI] [PubMed] [Google Scholar]
  47. Wikström M., Sjöbring U., Drakenberg T., Forsén S., Björck L. Mapping of the immunoglobulin light chain-binding site of protein L. J Mol Biol. 1995 Jul 7;250(2):128–133. doi: 10.1006/jmbi.1995.0364. [DOI] [PubMed] [Google Scholar]
  48. Wikström M., Sjöbring U., Kastern W., Björck L., Drakenberg T., Forsén S. Proton nuclear magnetic resonance sequential assignments and secondary structure of an immunoglobulin light chain-binding domain of protein L. Biochemistry. 1993 Apr 6;32(13):3381–3386. doi: 10.1021/bi00064a023. [DOI] [PubMed] [Google Scholar]
  49. Williamson M. P. Secondary-structure dependent chemical shifts in proteins. Biopolymers. 1990 Aug 15;29(10-11):1423–1431. doi: 10.1002/bip.360291009. [DOI] [PubMed] [Google Scholar]
  50. Wright P. E., Dyson H. J., Lerner R. A. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry. 1988 Sep 20;27(19):7167–7175. doi: 10.1021/bi00419a001. [DOI] [PubMed] [Google Scholar]
  51. Wüthrich K., Wider G., Wagner G., Braun W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. J Mol Biol. 1982 Mar 5;155(3):311–319. doi: 10.1016/0022-2836(82)90007-9. [DOI] [PubMed] [Google Scholar]
  52. Yi Q., Baker D. Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR. Protein Sci. 1996 Jun;5(6):1060–1066. doi: 10.1002/pro.5560050608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. de Alba E., Blanco F. J., Jiménez M. A., Rico M., Nieto J. L. Interactions responsible for the pH dependence of the beta-hairpin conformational population formed by a designed linear peptide. Eur J Biochem. 1995 Oct 1;233(1):283–292. doi: 10.1111/j.1432-1033.1995.283_1.x. [DOI] [PubMed] [Google Scholar]
  54. de Alba E., Jiménez M. A., Rico M., Nieto J. L. Conformational investigation of designed short linear peptides able to fold into beta-hairpin structures in aqueous solution. Fold Des. 1996;1(2):133–144. doi: 10.1016/s1359-0278(96)00022-3. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES