Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Sep;5(9):1931–1933. doi: 10.1002/pro.5560050921

Crystallization and preliminary X-ray diffraction studies of the Lb proteinase from foot-and-mouth disease virus.

A Guarné 1, R Kirchweger 1, N Verdaguer 1, H D Liebig 1, D Blaas 1, T Skern 1, I Fita 1
PMCID: PMC2143545  PMID: 8880919

Abstract

Different crystal forms of the C23A mutant from the leader proteinase of foot-and-mouth disease virus were obtained by the hanging drop vapor diffusion technique, using MgCl2 and PEG 6000 as precipitants. Well-developed crystals, with cubic morphology growing to approximately 1.0 mm3 in size, presented a large unit cell parameter of 274.5 A and diffracted to, at most, 5 A resolution. A second type of crystal had a tetragonal appearance and these were obtained in droplets soaked in a silica gel matrix. These crystals, with an approximate size of 0.3 X 0.3 X 0.7 mm3, diffracted to approximately 4.0 A resolution, but presented a strong anisotropic mosaicity around the longest crystal axis. Crystals with a needlelike morphology and reaching sizes of about 0.2 X 0.3 X 1.2 mm3 diffracted beyond 3.5 A resolution and were stable to X-ray radiation for approximately one day when using a conventional source at room temperature. These crystals are orthorhombic with space group I222 (or I2(1)2(1)2(1)) and unit cell dimensions a = 65.9 A, b = 104.3 A, and c = 124.0 A, and appear well suited for high-resolution studies. Density packing considerations are consistent with the presence of two molecules in the asymmetric unit and a solvent content of approximately 54%.

Full Text

The Full Text of this article is available as a PDF (256.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Kirchweger R., Ziegler E., Lamphear B. J., Waters D., Liebig H. D., Sommergruber W., Sobrino F., Hohenadl C., Blaas D., Rhoads R. E. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J Virol. 1994 Sep;68(9):5677–5684. doi: 10.1128/jvi.68.9.5677-5684.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Lamphear B. J., Kirchweger R., Skern T., Rhoads R. E. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem. 1995 Sep 15;270(37):21975–21983. doi: 10.1074/jbc.270.37.21975. [DOI] [PubMed] [Google Scholar]
  3. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  4. Matthews D. A., Smith W. W., Ferre R. A., Condon B., Budahazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E., Gribskov C. L. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell. 1994 Jun 3;77(5):761–771. doi: 10.1016/0092-8674(94)90059-0. [DOI] [PubMed] [Google Scholar]
  5. Piccone M. E., Zellner M., Kumosinski T. F., Mason P. W., Grubman M. J. Identification of the active-site residues of the L proteinase of foot-and-mouth disease virus. J Virol. 1995 Aug;69(8):4950–4956. doi: 10.1128/jvi.69.8.4950-4956.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Roberts N. A., Martin J. A., Kinchington D., Broadhurst A. V., Craig J. C., Duncan I. B., Galpin S. A., Handa B. K., Kay J., Kröhn A. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990 Apr 20;248(4953):358–361. doi: 10.1126/science.2183354. [DOI] [PubMed] [Google Scholar]
  7. Roberts P. J., Belsham G. J. Identification of critical amino acids within the foot-and-mouth disease virus leader protein, a cysteine protease. Virology. 1995 Oct 20;213(1):140–146. doi: 10.1006/viro.1995.1554. [DOI] [PubMed] [Google Scholar]
  8. Ziegler E., Borman A. M., Kirchweger R., Skern T., Kean K. M. Foot-and-mouth disease virus Lb proteinase can stimulate rhinovirus and enterovirus IRES-driven translation and cleave several proteins of cellular and viral origin. J Virol. 1995 Jun;69(6):3465–3474. doi: 10.1128/jvi.69.6.3465-3474.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES