Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Sep;5(9):1765–1775. doi: 10.1002/pro.5560050902

Crystal structure of the 2[4Fe-4S] ferredoxin from Chromatium vinosum: evolutionary and mechanistic inferences for [3/4Fe-4S] ferredoxins.

J M Moulis 1, L C Sieker 1, K S Wilson 1, Z Dauter 1
PMCID: PMC2143546  PMID: 8880900

Abstract

The crystal structure of the 2[4Fe-4S] ferredoxin from Chromatium vinosum has been solved by molecular replacement using data recorded with synchrotron radiation. The crystals were hexagonal prisms that showed a strong tendency to develop into long tubes. The hexagonal prisms diffracted to 2.1 A resolution at best, and a structural model for C. vinosum ferredoxin has been built with a final R of 19.2%. The N-terminal domain coordinates the two [4Fe-4S] clusters in a fold that is almost identical to that of other known ferredoxins. However, the structure has two unique features. One is a six-residue insertion between two ligands of one cluster forming a two-turn external loop; this short loop changes the conformation of the Cys 40 ligand compared to other ferredoxins and hampers the building of one NH...S H-bond to one of the inorganic sulfurs. The other remarkable structural element is a 3.5-turn alpha-helix at the C-terminus that covers one side of the same cluster and is linked to the cluster-binding domain by a six-residue external chain segment. The charge distribution is highly asymmetric over the molecule. The structure of C. vinosum ferredoxin strongly suggests divergent evolution for bacterial [3/4Fe-4S] ferredoxins from a common ancestral cluster-binding core. The unexpected slow intramolecular electron transfer rate between the clusters in C. vinosum ferredoxin, compared to other similar proteins, may be attributed to the unusual electronic properties of one of the clusters arising from localized changes in its vicinity rather than to a global structural rearrangement.

Full Text

The Full Text of this article is available as a PDF (7.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T., Siefker L. C., Jensen L. H. Structure of Peptococcus aerogenes ferredoxin. Refinement at 2 A resolution. J Biol Chem. 1976 Jun 25;251(12):3801–3806. doi: 10.2210/pdb1fdx/pdb. [DOI] [PubMed] [Google Scholar]
  2. Adman E. T., Sieker L. C., Jensen L. H. Structure of a bacterial ferredoxin. J Biol Chem. 1973 Jun 10;248(11):3987–3996. [PubMed] [Google Scholar]
  3. Bertini I., Donaire A., Feinberg B. A., Luchinat C., Piccioli M., Yuan H. Solution structure of the oxidized 2[4Fe-4S] ferredoxin from Clostridium pasteurianum. Eur J Biochem. 1995 Aug 15;232(1):192–205. doi: 10.1111/j.1432-1033.1995.tb20799.x. [DOI] [PubMed] [Google Scholar]
  4. Carter C. W., Jr, Kraut J., Freer S. T., Alden R. A., Sieker L. C., Adman E., Jensen L. H. A comparison of Fe 4 S 4 clusters in high-potential iron protein and in ferredoxin. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3526–3529. doi: 10.1073/pnas.69.12.3526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collaborative Computational Project, Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760–763. doi: 10.1107/S0907444994003112. [DOI] [PubMed] [Google Scholar]
  6. Fukuyama K., Matsubara H., Tsukihara T., Katsube Y. Structure of [4Fe-4S] ferredoxin from Bacillus thermoproteolyticus refined at 2.3 A resolution. Structural comparisons of bacterial ferredoxins. J Mol Biol. 1989 Nov 20;210(2):383–398. doi: 10.1016/0022-2836(89)90338-0. [DOI] [PubMed] [Google Scholar]
  7. Fukuyama K., Nagahara Y., Tsukihara T., Katsube Y., Hase T., Matsubara H. Tertiary structure of Bacillus thermoproteolyticus [4Fe-4S] ferredoxin. Evolutionary implications for bacterial ferredoxins. J Mol Biol. 1988 Jan 5;199(1):183–193. doi: 10.1016/0022-2836(88)90388-9. [DOI] [PubMed] [Google Scholar]
  8. Gaillard J., Quinkal I., Moulis J. M. Effect of replacing conserved proline residues on the EPR and NMR properties of Clostridium pasteurianum 2[4Fe-4S] ferredoxin. Biochemistry. 1993 Sep 28;32(38):9881–9887. doi: 10.1021/bi00089a002. [DOI] [PubMed] [Google Scholar]
  9. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  10. Huber J. G., Gaillard J., Moulis J. M. NMR of Chromatium vinosum ferredoxin: evidence for structural inequivalence and impeded electron transfer between the two [4Fe-4S] clusters. Biochemistry. 1995 Jan 10;34(1):194–205. doi: 10.1021/bi00001a024. [DOI] [PubMed] [Google Scholar]
  11. Kissinger C. R., Sieker L. C., Adman E. T., Jensen L. H. Refined crystal structure of ferredoxin II from Desulfovibrio gigas at 1.7 A. J Mol Biol. 1991 Jun 20;219(4):693–715. doi: 10.1016/0022-2836(91)90665-s. [DOI] [PubMed] [Google Scholar]
  12. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  13. Moulis J. M., Davasse V. Probing the role of electrostatic forces in the interaction of Clostridium pasteurianum ferredoxin with its redox partners. Biochemistry. 1995 Dec 26;34(51):16781–16788. doi: 10.1021/bi00051a028. [DOI] [PubMed] [Google Scholar]
  14. Otaka E., Ooi T. Examination of protein sequence homologies: IV. Twenty-seven bacterial ferredoxins. J Mol Evol. 1987;26(3):257–267. doi: 10.1007/BF02099857. [DOI] [PubMed] [Google Scholar]
  15. Smith E. T., Feinberg B. A. Redox properties of several bacterial ferredoxins using square wave voltammetry. J Biol Chem. 1990 Aug 25;265(24):14371–14376. [PubMed] [Google Scholar]
  16. Stout C. D. Refinement of the 7 Fe ferredoxin from Azotobacter vinelandii at 1.9 A resolution. J Mol Biol. 1989 Feb 5;205(3):545–555. doi: 10.1016/0022-2836(89)90225-8. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES