Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Sep;5(9):1874–1882. doi: 10.1002/pro.5560050913

High- and low-temperature unfolding of human high-density apolipoprotein A-2.

O Gursky 1, D Atkinson 1
PMCID: PMC2143548  PMID: 8880911

Abstract

Human plasma apolipoprotein A-2 (apoA-2) is the second major protein of the high-density lipoproteins that mediate the transport and metabolism of cholesterol. Using CD spectroscopy and differential scanning calorimetry, we demonstrate that the structure of lipid-free apoA-2 in neutral low-salt solutions is most stable at approximately 25 degrees C and unfolds reversibly both upon heating and cooling from 25 degrees C. High-temperature unfolding of apoA-2, monitored by far-UV CD, extends from 25-85 degrees C with midpoint Th = 56 +/- 2 degrees C and vant Hoff's enthalpy delta H(Th) = 17 +/- 2 kcal/mol that is substantially lower than the expected enthalpy of melting of the alpha-helical structure. This suggests low-cooperativity apoA-2 unfolding. The apparent free energy of apoA-2 stabilization inferred from the CD analysis of the thermal unfolding, delta G(app)(25 degrees) = 0.82 +/- 0.15 kcal/mol, agrees with the value determined from chemical denaturation. Enhanced low-temperature stability of apoA-2 observed upon increase in Na2HPO4 concentration from 0.3 mM to 50 mM or addition of 10% glycerol may be linked to reduced water activity. The close proximity of the heat and cold unfolding transitions, that is consistent with low delta G(app)(25 degrees), indicates that lipid-free apoA-2 has a substantial hydrophobic core but is only marginally stable under near-physiological solvent conditions. This suggests that in vivo apoA-2 transfer is unlikely to proceed via the lipid-free state. Low delta H(Th) and low apparent delta Cp approximately 0.52 kcal/mol.K inferred from the far-UV CD analysis of apoA-2 unfolding, and absence of tertiary packing interactions involving Tyr groups suggested by near-UV CD, are consistent with a molten globular-like state of lipid-free apoA-2.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggerbeck L. P., Wetterau J. R., Weisgraber K. H., Wu C. S., Lindgren F. T. Human apolipoprotein E3 in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains. J Biol Chem. 1988 May 5;263(13):6249–6258. [PubMed] [Google Scholar]
  2. Betz S. F., Raleigh D. P., DeGrado W. F., Lovejoy B., Anderson D., Ogihara N., Eisenberg D. Crystallization of a designed peptide from a molten globule ensemble. Fold Des. 1996;1(1):57–64. doi: 10.1016/S1359-0278(96)00012-0. [DOI] [PubMed] [Google Scholar]
  3. Breiter D. R., Kanost M. R., Benning M. M., Wesenberg G., Law J. H., Wells M. A., Rayment I., Holden H. M. Molecular structure of an apolipoprotein determined at 2.5-A resolution. Biochemistry. 1991 Jan 22;30(3):603–608. doi: 10.1021/bi00217a002. [DOI] [PubMed] [Google Scholar]
  4. Carra J. H., Anderson E. A., Privalov P. L. Thermodynamics of staphylococcal nuclease denaturation. I. The acid-denatured state. Protein Sci. 1994 Jun;3(6):944–951. doi: 10.1002/pro.5560030609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castelli W. P., Doyle J. T., Gordon T., Hames C. G., Hjortland M. C., Hulley S. B., Kagan A., Zukel W. J. HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study. Circulation. 1977 May;55(5):767–772. doi: 10.1161/01.cir.55.5.767. [DOI] [PubMed] [Google Scholar]
  6. Chen B. L., Schellman J. A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 1. Equilibrium studies. Biochemistry. 1989 Jan 24;28(2):685–691. doi: 10.1021/bi00428a041. [DOI] [PubMed] [Google Scholar]
  7. Donovan J. M., Benedek G. B., Carey M. C. Self-association of human apolipoproteins A-I and A-II and interactions of apolipoprotein A-I with bile salts: quasi-elastic light scattering studies. Biochemistry. 1987 Dec 15;26(25):8116–8125. doi: 10.1021/bi00399a015. [DOI] [PubMed] [Google Scholar]
  8. Fielding C. J., Fielding P. E. Evidence for a lipoprotein carrier in human plasma catalyzing sterol efflux from cultured fibroblasts and its relationship to lecithin:cholesterol acyltransferase. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3911–3914. doi: 10.1073/pnas.78.6.3911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griko Y. V., Privalov P. L., Venyaminov S. Y., Kutyshenko V. P. Thermodynamic study of the apomyoglobin structure. J Mol Biol. 1988 Jul 5;202(1):127–138. doi: 10.1016/0022-2836(88)90525-6. [DOI] [PubMed] [Google Scholar]
  10. Gursky O., Atkinson D. Thermal unfolding of human high-density apolipoprotein A-1: implications for a lipid-free molten globular state. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2991–2995. doi: 10.1073/pnas.93.7.2991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gwynne J., Palumbo G., Osborne J. C., Jr, Brewer H. B., Jr, Edelhoch H. The self-association of apoA-II, an apoprotein of the human high density lipoprotein complex. Arch Biochem Biophys. 1975 Sep;170(1):204–212. doi: 10.1016/0003-9861(75)90111-3. [DOI] [PubMed] [Google Scholar]
  12. Hedrick C. C., Lusis A. J. Apolipoprotein A-II: a protein in search of a function. Can J Cardiol. 1994 May;10(4):453–459. [PubMed] [Google Scholar]
  13. Jackson R. L., Holdsworth G. Isolation and properties of human apolipoproteins C-I, C-II, and C-III. Methods Enzymol. 1986;128:288–297. doi: 10.1016/0076-6879(86)28074-x. [DOI] [PubMed] [Google Scholar]
  14. McLachlan A. D. Repeated helical pattern in apolipoprotein-A-I. Nature. 1977 Jun 2;267(5610):465–466. doi: 10.1038/267465a0. [DOI] [PubMed] [Google Scholar]
  15. Osborne J. C., Jr, Lee N. S., Powell G. M. Solution properties of apolipoproteins. Methods Enzymol. 1986;128:375–387. doi: 10.1016/0076-6879(86)28081-7. [DOI] [PubMed] [Google Scholar]
  16. Osborne J. C., Jr, Palumbo G., Brewer H. B., Jr, Edelhoch H. The thermodynamics of the self-association of the reduced and carboxymethylated form of apo-a-II from the human high density lipoprotein complex. Biochemistry. 1976 Jan 27;15(2):317–320. doi: 10.1021/bi00647a012. [DOI] [PubMed] [Google Scholar]
  17. Privalov P. L. Cold denaturation of proteins. Crit Rev Biochem Mol Biol. 1990;25(4):281–305. doi: 10.3109/10409239009090612. [DOI] [PubMed] [Google Scholar]
  18. Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
  19. Privalov P. L., Griko YuV, Venyaminov SYu, Kutyshenko V. P. Cold denaturation of myoglobin. J Mol Biol. 1986 Aug 5;190(3):487–498. doi: 10.1016/0022-2836(86)90017-3. [DOI] [PubMed] [Google Scholar]
  20. Privalov P. L., Makhatadze G. I. Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol. 1990 May 20;213(2):385–391. doi: 10.1016/S0022-2836(05)80198-6. [DOI] [PubMed] [Google Scholar]
  21. Privalov P. L. Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1–104. [PubMed] [Google Scholar]
  22. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  23. Privalov P. L., Tiktopulo E. I., Venyaminov SYu, Griko YuV, Makhatadze G. I., Khechinashvili N. N. Heat capacity and conformation of proteins in the denatured state. J Mol Biol. 1989 Feb 20;205(4):737–750. doi: 10.1016/0022-2836(89)90318-5. [DOI] [PubMed] [Google Scholar]
  24. Reynolds J. A. Conformational stability of the polypeptide components of human high density serum lipoprotein. J Biol Chem. 1976 Oct 10;251(19):6013–6015. [PubMed] [Google Scholar]
  25. Robertson A. D., Baldwin R. L. Hydrogen exchange in thermally denatured ribonuclease A. Biochemistry. 1991 Oct 15;30(41):9907–9914. doi: 10.1021/bi00105a014. [DOI] [PubMed] [Google Scholar]
  26. Scanu A. M., Byrne R. E., Mihovilovic M. Functional roles of plasma high density lipoproteins. CRC Crit Rev Biochem. 1982;13(2):109–140. doi: 10.3109/10409238209108711. [DOI] [PubMed] [Google Scholar]
  27. Scholtz J. M., Marqusee S., Baldwin R. L., York E. J., Stewart J. M., Santoro M., Bolen D. W. Calorimetric determination of the enthalpy change for the alpha-helix to coil transition of an alanine peptide in water. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2854–2858. doi: 10.1073/pnas.88.7.2854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Segrest J. P., Jones M. K., De Loof H., Brouillette C. G., Venkatachalapathi Y. V., Anantharamaiah G. M. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res. 1992 Feb;33(2):141–166. [PubMed] [Google Scholar]
  29. Tall A. R., Shipley G. G., Small D. M. Conformational and thermodynamic properties of apo A-1 of human plasma high density lipoproteins. J Biol Chem. 1976 Jun 25;251(12):3749–3755. [PubMed] [Google Scholar]
  30. Teng T., Barbeau D. L., Scanu A. M. Sedimentation behavior of native and reduced apolipoprotein A-II from human high density lipoproteins. Biochemistry. 1978 Jan 10;17(1):17–21. doi: 10.1021/bi00594a003. [DOI] [PubMed] [Google Scholar]
  31. Wilson C., Wardell M. R., Weisgraber K. H., Mahley R. W., Agard D. A. Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science. 1991 Jun 28;252(5014):1817–1822. doi: 10.1126/science.2063194. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES