Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Oct;6(10):2159–2165. doi: 10.1002/pro.5560061010

Dissection of the gene of the bifunctional PGK-TIM fusion protein from the hyperthermophilic bacterium Thermotoga maritima: design and characterization of the separate triosephosphate isomerase.

N Beaucamp 1, A Hofmann 1, B Kellerer 1, R Jaenicke 1
PMCID: PMC2143554  PMID: 9336838

Abstract

Triosephosphate isomerase (TIM), from the hyperthermophilic bacterium Thermotoga maritima, has been shown to be covalently linked to phosphoglycerate kinase (PGK) forming a bifunctional fusion protein with TIM as the C-terminal portion of the subunits of the tetrameric protein (Schurig et al., EMBO J 14:442-451, 1995). To study the effect of the anomalous state of association on the structure, stability, and function of Thermotoga TIM, the isolated enzyme was cloned and expressed in Escherichia coli, and compared with its wild-type structure in the PGK-TIM fusion protein. After introducing a start codon at the beginning of the tpi open reading frame, the gene was expressed in E.c.BL21(DE3)/ pNBTIM. The nucleotide sequence was confirmed and the protein purified as a functional dimer of 56.5 kDa molecular mass. Spectral analysis, using absorption, fluorescence emission, near- and far-UV circular dichroism spectroscopy were used to compare the separated Thermotoga enzyme with its homologs from mesophiles. The catalytic properties of the enzyme at approximately 80 degrees C are similar to those of its mesophilic counterparts at their respective physiological temperatures, in accordance with the idea that under in vivo conditions enzymes occupy corresponding states. As taken from chaotropic and thermal denaturation transitions, the separated enzyme exhibits high intrinsic stability, with a half-concentration of guanidinium-chloride at 3.8 M, and a denaturation half-time at 80 degrees C of 2 h. Comparing the properties of the TIM portion of the PGK-TIM fusion protein with those of the isolated recombinant TIM, it is found that the fusion of the two enzymes not only enhances the intrinsic stability of TIM but also its catalytic efficiency.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach G., Jacob U., Grättinger M., Schurig H., Jaenicke R. Crystallographic analysis of phosphoglycerate kinase from the hyperthermophilic bacterium Thermotoga maritima. Biol Chem. 1997 Mar-Apr;378(3-4):327–329. [PubMed] [Google Scholar]
  2. Banner D. W., Bloomer A. C., Petsko G. A., Phillips D. C., Pogson C. I., Wilson I. A., Corran P. H., Furth A. J., Milman J. D., Offord R. E. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature. 1975 Jun 19;255(5510):609–614. doi: 10.1038/255609a0. [DOI] [PubMed] [Google Scholar]
  3. Beaucamp N., Schurig H., Jaenicke R. The PGK-TIM fusion protein from Thermotoga maritima and its constituent parts are intrinsically stable and fold independently. Biol Chem. 1997 Jul;378(7):679–685. doi: 10.1515/bchm.1997.378.7.679. [DOI] [PubMed] [Google Scholar]
  4. Borchert T. V., Abagyan R., Jaenicke R., Wierenga R. K. Design, creation, and characterization of a stable, monomeric triosephosphate isomerase. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1515–1518. doi: 10.1073/pnas.91.4.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borchert T. V., Abagyan R., Kishan K. V., Zeelen J. P., Wierenga R. K. The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop. Structure. 1993 Nov 15;1(3):205–213. doi: 10.1016/0969-2126(93)90021-8. [DOI] [PubMed] [Google Scholar]
  6. Böhm G., Jaenicke R. Correlation functions as a tool for protein modeling and structure analysis. Protein Sci. 1992 Oct;1(10):1269–1278. doi: 10.1002/pro.5560011005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Böhm G., Jaenicke R. Relevance of sequence statistics for the properties of extremophilic proteins. Int J Pept Protein Res. 1994 Jan;43(1):97–106. doi: 10.1111/j.1399-3011.1994.tb00380.x. [DOI] [PubMed] [Google Scholar]
  8. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  9. Gracy R. W. Triosephosphate isomerase from human erythrocytes. Methods Enzymol. 1975;41:442–447. doi: 10.1016/s0076-6879(75)41096-5. [DOI] [PubMed] [Google Scholar]
  10. Hess D., Krüger K., Knappik A., Palm P., Hensel R. Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus. Eur J Biochem. 1995 Oct 1;233(1):227–237. doi: 10.1111/j.1432-1033.1995.227_1.x. [DOI] [PubMed] [Google Scholar]
  11. Hilbert M., Böhm G., Jaenicke R. Structural relationships of homologous proteins as a fundamental principle in homology modeling. Proteins. 1993 Oct;17(2):138–151. doi: 10.1002/prot.340170204. [DOI] [PubMed] [Google Scholar]
  12. Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991 Dec 18;202(3):715–728. doi: 10.1111/j.1432-1033.1991.tb16426.x. [DOI] [PubMed] [Google Scholar]
  13. Kim C. W., Markiewicz P., Lee J. J., Schierle C. F., Miller J. H. Studies of the hyperthermophile Thermotoga maritima by random sequencing of cDNA and genomic libraries. Identification and sequencing of the trpEG (D) operon. J Mol Biol. 1993 Jun 20;231(4):960–981. doi: 10.1006/jmbi.1993.1345. [DOI] [PubMed] [Google Scholar]
  14. Knowles J. R. Enzyme catalysis: not different, just better. Nature. 1991 Mar 14;350(6314):121–124. doi: 10.1038/350121a0. [DOI] [PubMed] [Google Scholar]
  15. Kohlhoff M., Dahm A., Hensel R. Tetrameric triosephosphate isomerase from hyperthermophilic Archaea. FEBS Lett. 1996 Apr 1;383(3):245–250. doi: 10.1016/0014-5793(96)00249-9. [DOI] [PubMed] [Google Scholar]
  16. Krietsch W. K. Triosephosphate isomerase from yeast. Methods Enzymol. 1975;41:434–438. doi: 10.1016/s0076-6879(75)41094-1. [DOI] [PubMed] [Google Scholar]
  17. Lodi P. J., Knowles J. R. Neutral imidazole is the electrophile in the reaction catalyzed by triosephosphate isomerase: structural origins and catalytic implications. Biochemistry. 1991 Jul 16;30(28):6948–6956. doi: 10.1021/bi00242a020. [DOI] [PubMed] [Google Scholar]
  18. Lolis E., Alber T., Davenport R. C., Rose D., Hartman F. C., Petsko G. A. Structure of yeast triosephosphate isomerase at 1.9-A resolution. Biochemistry. 1990 Jul 17;29(28):6609–6618. doi: 10.1021/bi00480a009. [DOI] [PubMed] [Google Scholar]
  19. Noble M. E., Zeelen J. P., Wierenga R. K., Mainfroid V., Goraj K., Gohimont A. C., Martial J. A. Structure of triosephosphate isomerase from Escherichia coli determined at 2.6 A resolution. Acta Crystallogr D Biol Crystallogr. 1993 Jul 1;49(Pt 4):403–417. doi: 10.1107/S0907444993002628. [DOI] [PubMed] [Google Scholar]
  20. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  22. Rehaber V., Jaenicke R. Stability and reconstitution of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima. J Biol Chem. 1992 Jun 5;267(16):10999–11006. [PubMed] [Google Scholar]
  23. Rentier-Delrue F., Mande S. C., Moyens S., Terpstra P., Mainfroid V., Goraj K., Lion M., Hol W. G., Martial J. A. Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequences. J Mol Biol. 1993 Jan 5;229(1):85–93. doi: 10.1006/jmbi.1993.1010. [DOI] [PubMed] [Google Scholar]
  24. Rudolph R., Zettlmeissl G., Jaenicke R. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 2. Reactivation of irreversibly denatured aggregates. Biochemistry. 1979 Dec 11;18(25):5572–5575. doi: 10.1021/bi00592a008. [DOI] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schurig H., Beaucamp N., Ostendorp R., Jaenicke R., Adler E., Knowles J. R. Phosphoglycerate kinase and triosephosphate isomerase from the hyperthermophilic bacterium Thermotoga maritima form a covalent bifunctional enzyme complex. EMBO J. 1995 Feb 1;14(3):442–451. doi: 10.1002/j.1460-2075.1995.tb07020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schurig H., Rutkat K., Rachel R., Jaenicke R. Octameric enolase from the hyperthermophilic bacterium Thermotoga maritima: purification, characterization, and image processing. Protein Sci. 1995 Feb;4(2):228–236. doi: 10.1002/pro.5560040209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Skerra A., Pfitzinger I., Plückthun A. The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Biotechnology (N Y) 1991 Mar;9(3):273–278. doi: 10.1038/nbt0391-273. [DOI] [PubMed] [Google Scholar]
  29. Snyder R., Lee E. W. Triosephosphate isomerase from human and horse liver. Methods Enzymol. 1975;41:430–434. doi: 10.1016/s0076-6879(75)41093-x. [DOI] [PubMed] [Google Scholar]
  30. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  31. Wierenga R. K., Noble M. E., Davenport R. C. Comparison of the refined crystal structures of liganded and unliganded chicken, yeast and trypanosomal triosephosphate isomerase. J Mol Biol. 1992 Apr 20;224(4):1115–1126. doi: 10.1016/0022-2836(92)90473-w. [DOI] [PubMed] [Google Scholar]
  32. Wierenga R. K., Noble M. E., Vriend G., Nauche S., Hol W. G. Refined 1.83 A structure of trypanosomal triosephosphate isomerase crystallized in the presence of 2.4 M-ammonium sulphate. A comparison with the structure of the trypanosomal triosephosphate isomerase-glycerol-3-phosphate complex. J Mol Biol. 1991 Aug 20;220(4):995–1015. doi: 10.1016/0022-2836(91)90368-g. [DOI] [PubMed] [Google Scholar]
  33. Wrba A., Schweiger A., Schultes V., Jaenicke R., Závodszky P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry. 1990 Aug 21;29(33):7584–7592. doi: 10.1021/bi00485a007. [DOI] [PubMed] [Google Scholar]
  34. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  35. Yu J. S., Noll K. M. The hyperthermophilic bacterium Thermotoga neapolitana possesses two isozymes of the 3-phosphoglycerate kinase/triosephosphate isomerase fusion protein. FEMS Microbiol Lett. 1995 Sep 15;131(3):307–312. doi: 10.1111/j.1574-6968.1995.tb07792.x. [DOI] [PubMed] [Google Scholar]
  36. Zabori S., Rudolph R., Jaenicke R. Folding and association of triose phosphate isomerase from rabbit muscle. Z Naturforsch C. 1980 Nov-Dec;35(11-12):999–1004. doi: 10.1515/znc-1980-11-1224. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES