Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Oct;6(10):2107–2119. doi: 10.1002/pro.5560061006

Phosphorylation on histidine is accompanied by localized structural changes in the phosphocarrier protein, HPr from Bacillus subtilis.

B E Jones 1, P Rajagopal 1, R E Klevit 1
PMCID: PMC2143559  PMID: 9336834

Abstract

The histidine-containing protein (HPr) of bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) serves a central role in a series of phosphotransfer reactions used for the translocation of sugars across cell membranes. These studies report the high-definition solution structures of both the unphosphorylated and histidine phosphorylated (P-His) forms of HPr from Bacillus subtilis. Consistent with previous NMR studies, local conformational adjustments occur upon phosphorylation of His 15, which positions the phosphate group to serve as a hydrogen bond acceptor for the amide protons of Ala 16 and Arg 17 and to interact favorably with the alpha-helix macrodipole. However, the positively charged side chain of the highly conserved Arg 17 does not appear to interact directly with phospho-His 15, suggesting that Arg 17 plays a role in the recognition of other PTS enzymes or in phosphotransfer reactions directly. Unlike the results reported for Escherichia coli P-His HPr (Van Nuland NA, Boelens R, Scheek RM, Robillard GT, 1995, J Mol Biol 246:180-193), our data indicate that phosphorylation of His 15 is not accompanied by adoption of unfavorable backbone conformations for active site residues in B. subtilis P-Ser HPr.

Full Text

The Full Text of this article is available as a PDF (5.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  2. Farrow N. A., Muhandiram R., Singer A. U., Pascal S. M., Kay C. M., Gish G., Shoelson S. E., Pawson T., Forman-Kay J. D., Kay L. E. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994 May 17;33(19):5984–6003. doi: 10.1021/bi00185a040. [DOI] [PubMed] [Google Scholar]
  3. Grzesiek S., Bax A. Measurement of amide proton exchange rates and NOEs with water in 13C/15N-enriched calcineurin B. J Biomol NMR. 1993 Nov;3(6):627–638. doi: 10.1007/BF00198368. [DOI] [PubMed] [Google Scholar]
  4. Herzberg O. An atomic model for protein-protein phosphoryl group transfer. J Biol Chem. 1992 Dec 5;267(34):24819–24823. [PubMed] [Google Scholar]
  5. Herzberg O., Klevit R. Unraveling a bacterial hexose transport pathway. Curr Opin Struct Biol. 1994 Dec;4(6):814–822. doi: 10.1016/0959-440x(94)90262-3. [DOI] [PubMed] [Google Scholar]
  6. Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
  7. Hol W. G., van Duijnen P. T., Berendsen H. J. The alpha-helix dipole and the properties of proteins. Nature. 1978 Jun 8;273(5662):443–446. doi: 10.1038/273443a0. [DOI] [PubMed] [Google Scholar]
  8. Hurley J. H., Dean A. M., Thorsness P. E., Koshland D. E., Jr, Stroud R. M. Regulation of isocitrate dehydrogenase by phosphorylation involves no long-range conformational change in the free enzyme. J Biol Chem. 1990 Mar 5;265(7):3599–3602. doi: 10.2210/pdb4icd/pdb. [DOI] [PubMed] [Google Scholar]
  9. Hyberts S. G., Goldberg M. S., Havel T. F., Wagner G. The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. 1992 Jun;1(6):736–751. doi: 10.1002/pro.5560010606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jia Z., Quail J. W., Waygood E. B., Delbaere L. T. The 2.0-A resolution structure of Escherichia coli histidine-containing phosphocarrier protein HPr. A redetermination. J Biol Chem. 1993 Oct 25;268(30):22490–22501. doi: 10.2210/pdb1poh/pdb. [DOI] [PubMed] [Google Scholar]
  11. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  12. Kalbitzer H. R., Hengstenberg W. The solution structure of the histidine-containing protein (HPr) from Staphylococcus aureus as determined by two-dimensional 1H-NMR spectroscopy. Eur J Biochem. 1993 Aug 15;216(1):205–214. doi: 10.1111/j.1432-1033.1993.tb18134.x. [DOI] [PubMed] [Google Scholar]
  13. Liao D. I., Herzberg O. Refined structures of the active Ser83-->Cys and impaired Ser46-->Asp histidine-containing phosphocarrier proteins. Structure. 1994 Dec 15;2(12):1203–1216. doi: 10.1016/s0969-2126(94)00122-7. [DOI] [PubMed] [Google Scholar]
  14. Liao D. I., Silverton E., Seok Y. J., Lee B. R., Peterkofsky A., Davies D. R. The first step in sugar transport: crystal structure of the amino terminal domain of enzyme I of the E. coli PEP: sugar phosphotransferase system and a model of the phosphotransfer complex with HPr. Structure. 1996 Jul 15;4(7):861–872. doi: 10.1016/s0969-2126(96)00092-5. [DOI] [PubMed] [Google Scholar]
  15. Maeda T., Wurgler-Murphy S. M., Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994 May 19;369(6477):242–245. doi: 10.1038/369242a0. [DOI] [PubMed] [Google Scholar]
  16. Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 1988 Mar 14;229(2):317–324. doi: 10.1016/0014-5793(88)81148-7. [DOI] [PubMed] [Google Scholar]
  17. Pelton J. G., Torchia D. A., Meadow N. D., Roseman S. Structural comparison of phosphorylated and unphosphorylated forms of IIIGlc, a signal-transducing protein from Escherichia coli, using three-dimensional NMR techniques. Biochemistry. 1992 Jun 9;31(22):5215–5224. doi: 10.1021/bi00137a017. [DOI] [PubMed] [Google Scholar]
  18. Pullen K., Rajagopal P., Branchini B. R., Huffine M. E., Reizer J., Saier M. H., Jr, Scholtz J. M., Klevit R. E. Phosphorylation of serine-46 in HPr, a key regulatory protein in bacteria, results in stabilization of its solution structure. Protein Sci. 1995 Dec;4(12):2478–2486. doi: 10.1002/pro.5560041204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rajagopal P., Waygood E. B., Klevit R. E. Structural consequences of histidine phosphorylation: NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli. Biochemistry. 1994 Dec 27;33(51):15271–15282. doi: 10.1021/bi00255a008. [DOI] [PubMed] [Google Scholar]
  20. Reizer J., Sutrina S. L., Saier M. H., Stewart G. C., Peterkofsky A., Reddy P. Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J. 1989 Jul;8(7):2111–2120. doi: 10.1002/j.1460-2075.1989.tb03620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spera S., Ikura M., Bax A. Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J Biomol NMR. 1991 Jul;1(2):155–165. doi: 10.1007/BF01877227. [DOI] [PubMed] [Google Scholar]
  22. Swanson R. V., Alex L. A., Simon M. I. Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem Sci. 1994 Nov;19(11):485–490. doi: 10.1016/0968-0004(94)90135-x. [DOI] [PubMed] [Google Scholar]
  23. Van Nuland N. A., Wiersma J. A., Van Der Spoel D., De Groot B. L., Scheek R. M., Robillard G. T. Phosphorylation-induced torsion-angle strain in the active center of HPr, detected by NMR and restrained molecular dynamics refinement. Protein Sci. 1996 Mar;5(3):442–446. doi: 10.1002/pro.5560050305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wittekind M., Rajagopal P., Branchini B. R., Reizer J., Saier M. H., Jr, Klevit R. E. Solution structure of the phosphocarrier protein HPr from Bacillus subtilis by two-dimensional NMR spectroscopy. Protein Sci. 1992 Oct;1(10):1363–1376. doi: 10.1002/pro.5560011016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wittekind M., Reizer J., Klevit R. E. Sequence-specific 1H NMR resonance assignments of Bacillus subtilis HPr: use of spectra obtained from mutants to resolve spectral overlap. Biochemistry. 1990 Aug 7;29(31):7191–7200. doi: 10.1021/bi00483a006. [DOI] [PubMed] [Google Scholar]
  26. Zhang O., Kay L. E., Olivier J. P., Forman-Kay J. D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR. 1994 Nov;4(6):845–858. doi: 10.1007/BF00398413. [DOI] [PubMed] [Google Scholar]
  27. Zheng J., Knighton D. R., ten Eyck L. F., Karlsson R., Xuong N., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry. 1993 Mar 9;32(9):2154–2161. doi: 10.1021/bi00060a005. [DOI] [PubMed] [Google Scholar]
  28. van Nuland N. A., Boelens R., Scheek R. M., Robillard G. T. High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. J Mol Biol. 1995 Feb 10;246(1):180–193. doi: 10.1006/jmbi.1994.0075. [DOI] [PubMed] [Google Scholar]
  29. van Nuland N. A., Hangyi I. W., van Schaik R. C., Berendsen H. J., van Gunsteren W. F., Scheek R. M., Robillard G. T. The high-resolution structure of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from nuclear magnetic resonance nuclear Overhauser effect data. J Mol Biol. 1994 Apr 15;237(5):544–559. doi: 10.1006/jmbi.1994.1254. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES