Abstract
The histidine-containing protein (HPr) of bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) serves a central role in a series of phosphotransfer reactions used for the translocation of sugars across cell membranes. These studies report the high-definition solution structures of both the unphosphorylated and histidine phosphorylated (P-His) forms of HPr from Bacillus subtilis. Consistent with previous NMR studies, local conformational adjustments occur upon phosphorylation of His 15, which positions the phosphate group to serve as a hydrogen bond acceptor for the amide protons of Ala 16 and Arg 17 and to interact favorably with the alpha-helix macrodipole. However, the positively charged side chain of the highly conserved Arg 17 does not appear to interact directly with phospho-His 15, suggesting that Arg 17 plays a role in the recognition of other PTS enzymes or in phosphotransfer reactions directly. Unlike the results reported for Escherichia coli P-His HPr (Van Nuland NA, Boelens R, Scheek RM, Robillard GT, 1995, J Mol Biol 246:180-193), our data indicate that phosphorylation of His 15 is not accompanied by adoption of unfavorable backbone conformations for active site residues in B. subtilis P-Ser HPr.
Full Text
The Full Text of this article is available as a PDF (5.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
- Farrow N. A., Muhandiram R., Singer A. U., Pascal S. M., Kay C. M., Gish G., Shoelson S. E., Pawson T., Forman-Kay J. D., Kay L. E. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994 May 17;33(19):5984–6003. doi: 10.1021/bi00185a040. [DOI] [PubMed] [Google Scholar]
- Grzesiek S., Bax A. Measurement of amide proton exchange rates and NOEs with water in 13C/15N-enriched calcineurin B. J Biomol NMR. 1993 Nov;3(6):627–638. doi: 10.1007/BF00198368. [DOI] [PubMed] [Google Scholar]
- Herzberg O. An atomic model for protein-protein phosphoryl group transfer. J Biol Chem. 1992 Dec 5;267(34):24819–24823. [PubMed] [Google Scholar]
- Herzberg O., Klevit R. Unraveling a bacterial hexose transport pathway. Curr Opin Struct Biol. 1994 Dec;4(6):814–822. doi: 10.1016/0959-440x(94)90262-3. [DOI] [PubMed] [Google Scholar]
- Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
- Hol W. G., van Duijnen P. T., Berendsen H. J. The alpha-helix dipole and the properties of proteins. Nature. 1978 Jun 8;273(5662):443–446. doi: 10.1038/273443a0. [DOI] [PubMed] [Google Scholar]
- Hurley J. H., Dean A. M., Thorsness P. E., Koshland D. E., Jr, Stroud R. M. Regulation of isocitrate dehydrogenase by phosphorylation involves no long-range conformational change in the free enzyme. J Biol Chem. 1990 Mar 5;265(7):3599–3602. doi: 10.2210/pdb4icd/pdb. [DOI] [PubMed] [Google Scholar]
- Hyberts S. G., Goldberg M. S., Havel T. F., Wagner G. The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. 1992 Jun;1(6):736–751. doi: 10.1002/pro.5560010606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jia Z., Quail J. W., Waygood E. B., Delbaere L. T. The 2.0-A resolution structure of Escherichia coli histidine-containing phosphocarrier protein HPr. A redetermination. J Biol Chem. 1993 Oct 25;268(30):22490–22501. doi: 10.2210/pdb1poh/pdb. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Kalbitzer H. R., Hengstenberg W. The solution structure of the histidine-containing protein (HPr) from Staphylococcus aureus as determined by two-dimensional 1H-NMR spectroscopy. Eur J Biochem. 1993 Aug 15;216(1):205–214. doi: 10.1111/j.1432-1033.1993.tb18134.x. [DOI] [PubMed] [Google Scholar]
- Liao D. I., Herzberg O. Refined structures of the active Ser83-->Cys and impaired Ser46-->Asp histidine-containing phosphocarrier proteins. Structure. 1994 Dec 15;2(12):1203–1216. doi: 10.1016/s0969-2126(94)00122-7. [DOI] [PubMed] [Google Scholar]
- Liao D. I., Silverton E., Seok Y. J., Lee B. R., Peterkofsky A., Davies D. R. The first step in sugar transport: crystal structure of the amino terminal domain of enzyme I of the E. coli PEP: sugar phosphotransferase system and a model of the phosphotransfer complex with HPr. Structure. 1996 Jul 15;4(7):861–872. doi: 10.1016/s0969-2126(96)00092-5. [DOI] [PubMed] [Google Scholar]
- Maeda T., Wurgler-Murphy S. M., Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994 May 19;369(6477):242–245. doi: 10.1038/369242a0. [DOI] [PubMed] [Google Scholar]
- Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 1988 Mar 14;229(2):317–324. doi: 10.1016/0014-5793(88)81148-7. [DOI] [PubMed] [Google Scholar]
- Pelton J. G., Torchia D. A., Meadow N. D., Roseman S. Structural comparison of phosphorylated and unphosphorylated forms of IIIGlc, a signal-transducing protein from Escherichia coli, using three-dimensional NMR techniques. Biochemistry. 1992 Jun 9;31(22):5215–5224. doi: 10.1021/bi00137a017. [DOI] [PubMed] [Google Scholar]
- Pullen K., Rajagopal P., Branchini B. R., Huffine M. E., Reizer J., Saier M. H., Jr, Scholtz J. M., Klevit R. E. Phosphorylation of serine-46 in HPr, a key regulatory protein in bacteria, results in stabilization of its solution structure. Protein Sci. 1995 Dec;4(12):2478–2486. doi: 10.1002/pro.5560041204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajagopal P., Waygood E. B., Klevit R. E. Structural consequences of histidine phosphorylation: NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli. Biochemistry. 1994 Dec 27;33(51):15271–15282. doi: 10.1021/bi00255a008. [DOI] [PubMed] [Google Scholar]
- Reizer J., Sutrina S. L., Saier M. H., Stewart G. C., Peterkofsky A., Reddy P. Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J. 1989 Jul;8(7):2111–2120. doi: 10.1002/j.1460-2075.1989.tb03620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spera S., Ikura M., Bax A. Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J Biomol NMR. 1991 Jul;1(2):155–165. doi: 10.1007/BF01877227. [DOI] [PubMed] [Google Scholar]
- Swanson R. V., Alex L. A., Simon M. I. Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem Sci. 1994 Nov;19(11):485–490. doi: 10.1016/0968-0004(94)90135-x. [DOI] [PubMed] [Google Scholar]
- Van Nuland N. A., Wiersma J. A., Van Der Spoel D., De Groot B. L., Scheek R. M., Robillard G. T. Phosphorylation-induced torsion-angle strain in the active center of HPr, detected by NMR and restrained molecular dynamics refinement. Protein Sci. 1996 Mar;5(3):442–446. doi: 10.1002/pro.5560050305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittekind M., Rajagopal P., Branchini B. R., Reizer J., Saier M. H., Jr, Klevit R. E. Solution structure of the phosphocarrier protein HPr from Bacillus subtilis by two-dimensional NMR spectroscopy. Protein Sci. 1992 Oct;1(10):1363–1376. doi: 10.1002/pro.5560011016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittekind M., Reizer J., Klevit R. E. Sequence-specific 1H NMR resonance assignments of Bacillus subtilis HPr: use of spectra obtained from mutants to resolve spectral overlap. Biochemistry. 1990 Aug 7;29(31):7191–7200. doi: 10.1021/bi00483a006. [DOI] [PubMed] [Google Scholar]
- Zhang O., Kay L. E., Olivier J. P., Forman-Kay J. D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR. 1994 Nov;4(6):845–858. doi: 10.1007/BF00398413. [DOI] [PubMed] [Google Scholar]
- Zheng J., Knighton D. R., ten Eyck L. F., Karlsson R., Xuong N., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry. 1993 Mar 9;32(9):2154–2161. doi: 10.1021/bi00060a005. [DOI] [PubMed] [Google Scholar]
- van Nuland N. A., Boelens R., Scheek R. M., Robillard G. T. High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. J Mol Biol. 1995 Feb 10;246(1):180–193. doi: 10.1006/jmbi.1994.0075. [DOI] [PubMed] [Google Scholar]
- van Nuland N. A., Hangyi I. W., van Schaik R. C., Berendsen H. J., van Gunsteren W. F., Scheek R. M., Robillard G. T. The high-resolution structure of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from nuclear magnetic resonance nuclear Overhauser effect data. J Mol Biol. 1994 Apr 15;237(5):544–559. doi: 10.1006/jmbi.1994.1254. [DOI] [PubMed] [Google Scholar]