Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Oct;6(10):2072–2083. doi: 10.1002/pro.5560061003

Ideal architecture of residue packing and its observation in protein structures.

G Raghunathan 1, R L Jernigan 1
PMCID: PMC2143567  PMID: 9336831

Abstract

A simple model of sphere packing has been investigated as an ideal model for long-range interactions for the packing of non-bonded residues in protein structures. By superposing all residues, the geometry of packing around a central residue is investigated. It is found that all residues conform almost perfectly to this lattice model for sphere packing when a radius of 6.5 A is used to define non-bonded (virtual) interacting residues. Side-chain positions with respect to sequential backbone segments are relatively regular as well. This lattice can readily be used in conformation simulations to reduce the conformational space.

Full Text

The Full Text of this article is available as a PDF (13.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahar I., Jernigan R. L. Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J Mol Biol. 1997 Feb 14;266(1):195–214. doi: 10.1006/jmbi.1996.0758. [DOI] [PubMed] [Google Scholar]
  2. Behe M. J., Lattman E. E., Rose G. D. The protein-folding problem: the native fold determines packing, but does packing determine the native fold? Proc Natl Acad Sci U S A. 1991 May 15;88(10):4195–4199. doi: 10.1073/pnas.88.10.4195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryant S. H., Lawrence C. E. An empirical energy function for threading protein sequence through the folding motif. Proteins. 1993 May;16(1):92–112. doi: 10.1002/prot.340160110. [DOI] [PubMed] [Google Scholar]
  4. Casari G., Sippl M. J. Structure-derived hydrophobic potential. Hydrophobic potential derived from X-ray structures of globular proteins is able to identify native folds. J Mol Biol. 1992 Apr 5;224(3):725–732. doi: 10.1016/0022-2836(92)90556-y. [DOI] [PubMed] [Google Scholar]
  5. Chandrasekaran R., Ramachandran G. N. Studies on the conformation of amino acids. XI. Analysis of the observed side group conformation in proteins. Int J Protein Res. 1970;2(4):223–233. [PubMed] [Google Scholar]
  6. Covell D. G., Jernigan R. L. Conformations of folded proteins in restricted spaces. Biochemistry. 1990 Apr 3;29(13):3287–3294. doi: 10.1021/bi00465a020. [DOI] [PubMed] [Google Scholar]
  7. DeWitte R. S., Shakhnovich E. I. Pseudodihedrals: simplified protein backbone representation with knowledge-based energy. Protein Sci. 1994 Sep;3(9):1570–1581. doi: 10.1002/pro.5560030922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
  9. Godzik A., Koliński A., Skolnick J. Are proteins ideal mixtures of amino acids? Analysis of energy parameter sets. Protein Sci. 1995 Oct;4(10):2107–2117. doi: 10.1002/pro.5560041016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hinds D. A., Levitt M. A lattice model for protein structure prediction at low resolution. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2536–2540. doi: 10.1073/pnas.89.7.2536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Janin J., Wodak S. Conformation of amino acid side-chains in proteins. J Mol Biol. 1978 Nov 5;125(3):357–386. doi: 10.1016/0022-2836(78)90408-4. [DOI] [PubMed] [Google Scholar]
  12. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  13. Kocher J. P., Rooman M. J., Wodak S. J. Factors influencing the ability of knowledge-based potentials to identify native sequence-structure matches. J Mol Biol. 1994 Feb 4;235(5):1598–1613. doi: 10.1006/jmbi.1994.1109. [DOI] [PubMed] [Google Scholar]
  14. Kolinski A., Skolnick J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins. 1994 Apr;18(4):338–352. doi: 10.1002/prot.340180405. [DOI] [PubMed] [Google Scholar]
  15. Lim W. A., Hodel A., Sauer R. T., Richards F. M. The crystal structure of a mutant protein with altered but improved hydrophobic core packing. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):423–427. doi: 10.1073/pnas.91.1.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miyazawa S., Jernigan R. L. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol. 1996 Mar 1;256(3):623–644. doi: 10.1006/jmbi.1996.0114. [DOI] [PubMed] [Google Scholar]
  17. Munson M., Balasubramanian S., Fleming K. G., Nagi A. D., O'Brien R., Sturtevant J. M., Regan L. What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Sci. 1996 Aug;5(8):1584–1593. doi: 10.1002/pro.5560050813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nishikawa K., Matsuo Y. Development of pseudoenergy potentials for assessing protein 3-D-1-D compatibility and detecting weak homologies. Protein Eng. 1993 Nov;6(8):811–820. doi: 10.1093/protein/6.8.811. [DOI] [PubMed] [Google Scholar]
  19. Nishikawa K., Momany F. A., Scheraga H. A. Low-energy structures of two dipeptides and their relationship to bend conformations. Macromolecules. 1974 Nov-Dec;7(6):797–806. doi: 10.1021/ma60042a020. [DOI] [PubMed] [Google Scholar]
  20. Park B. H., Levitt M. The complexity and accuracy of discrete state models of protein structure. J Mol Biol. 1995 Jun 2;249(2):493–507. doi: 10.1006/jmbi.1995.0311. [DOI] [PubMed] [Google Scholar]
  21. Ponnuswamy P. K., Sasisekharan V. Studies on the conformation of amino acids. IV. Conformations of serine, threonine, cysteine, and valine. Int J Protein Res. 1971;3(1):1–8. [PubMed] [Google Scholar]
  22. Ponnuswamy P. K., Sasisekharan V. Studies on the conformation of amino acids. V. Conformation of amino acids with delta-atoms. Int J Protein Res. 1971;3(1):9–18. doi: 10.1111/j.1399-3011.1971.tb01687.x. [DOI] [PubMed] [Google Scholar]
  23. Reva B. A., Rykunov D. S., Olson A. J., Finkelstein A. V. Constructing lattice models of protein chains with side groups. J Comput Biol. 1995 Winter;2(4):527–535. doi: 10.1089/cmb.1995.2.527. [DOI] [PubMed] [Google Scholar]
  24. Richards F. M., Lim W. A. An analysis of packing in the protein folding problem. Q Rev Biophys. 1993 Nov;26(4):423–498. doi: 10.1017/s0033583500002845. [DOI] [PubMed] [Google Scholar]
  25. Sippl M. J. Knowledge-based potentials for proteins. Curr Opin Struct Biol. 1995 Apr;5(2):229–235. doi: 10.1016/0959-440x(95)80081-6. [DOI] [PubMed] [Google Scholar]
  26. Skolnick J., Kolinski A. Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics. J Mol Biol. 1991 Sep 20;221(2):499–531. doi: 10.1016/0022-2836(91)80070-b. [DOI] [PubMed] [Google Scholar]
  27. Srinivasan R., Balasubramanian R., Rajan S. S. Some new methods and general results of analysis of protein crystallographic structural data. J Mol Biol. 1975 Nov 15;98(4):739–747. doi: 10.1016/s0022-2836(75)80007-6. [DOI] [PubMed] [Google Scholar]
  28. Wynn R., Harkins P. C., Richards F. M., Fox R. O. Mobile unnatural amino acid side chains in the core of staphylococcal nuclease. Protein Sci. 1996 Jun;5(6):1026–1031. doi: 10.1002/pro.5560050605. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES