Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Oct;6(10):2097–2106. doi: 10.1002/pro.5560061005

The structures of thymidine kinase from herpes simplex virus type 1 in complex with substrates and a substrate analogue.

K Wild 1, T Bohner 1, G Folkers 1, G E Schulz 1
PMCID: PMC2143568  PMID: 9336833

Abstract

Thymidine kinase from Herpes simplex virus type 1 (TK) was crystallized in an N-terminally truncated but fully active form. The structures of TK complexed with ADP at the ATP-site and deoxythymidine-5'-monophosphate (dTMP), deoxythymidine (dT), or idoxuridine-5'-phosphate (5-iodo-dUMP) at the substrate-site were refined to 2.75 A, 2.8 A, and 3.0 A resolution, respectively. TK catalyzes the phosphorylation of dT resulting in an ester, and the phosphorylation of dTMP giving rise to an anhydride. The presented TK structures indicate that there are only small differences between these two modes of action. Glu83 serves as a general base in the ester reaction. Arg163 parks at an internal aspartate during ester formation and binds the alpha-phosphate of dTMP during anhydride formation. The bound deoxythymidine leaves a 35 A3 cavity at position 5 of the base and two sequestered water molecules at position 2. Cavity and water molecules reduce the substrate specificity to such an extent that TK can phosphorylate various substrate analogues useful in pharmaceutical applications. TK is structurally homologous to the well-known nucleoside monophosphate kinases but contains large additional peptide segments.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abele U., Schulz G. E. High-resolution structures of adenylate kinase from yeast ligated with inhibitor Ap5A, showing the pathway of phosphoryl transfer. Protein Sci. 1995 Jul;4(7):1262–1271. doi: 10.1002/pro.5560040702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balasubramaniam N. K., Veerisetty V., Gentry G. A. Herpesviral deoxythymidine kinases contain a site analogous to the phosphoryl-binding arginine-rich region of porcine adenylate kinase; comparison of secondary structure predictions and conservation. J Gen Virol. 1990 Dec;71(Pt 12):2979–2987. doi: 10.1099/0022-1317-71-12-2979. [DOI] [PubMed] [Google Scholar]
  3. Black M. E., Loeb L. A. Identification of important residues within the putative nucleoside binding site of HSV-1 thymidine kinase by random sequence selection: analysis of selected mutants in vitro. Biochemistry. 1993 Nov 2;32(43):11618–11626. doi: 10.1021/bi00094a019. [DOI] [PubMed] [Google Scholar]
  4. Brown D. G., Visse R., Sandhu G., Davies A., Rizkallah P. J., Melitz C., Summers W. C., Sanderson M. R. Crystal structures of the thymidine kinase from herpes simplex virus type-1 in complex with deoxythymidine and ganciclovir. Nat Struct Biol. 1995 Oct;2(10):876–881. doi: 10.1038/nsb1095-876. [DOI] [PubMed] [Google Scholar]
  5. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  6. Connolly M. L. The molecular surface package. J Mol Graph. 1993 Jun;11(2):139–141. doi: 10.1016/0263-7855(93)87010-3. [DOI] [PubMed] [Google Scholar]
  7. De Clercq E. Antivirals for the treatment of herpesvirus infections. J Antimicrob Chemother. 1993 Jul;32 (Suppl A):121–132. doi: 10.1093/jac/32.suppl_a.121. [DOI] [PubMed] [Google Scholar]
  8. Dreusicke D., Schulz G. E. The glycine-rich loop of adenylate kinase forms a giant anion hole. FEBS Lett. 1986 Nov 24;208(2):301–304. doi: 10.1016/0014-5793(86)81037-7. [DOI] [PubMed] [Google Scholar]
  9. Fetzer J., Michael M., Bohner T., Hofbauer R., Folkers G. A fast method for obtaining highly pure recombinant herpes simplex virus type 1 thymidine kinase. Protein Expr Purif. 1994 Oct;5(5):432–441. doi: 10.1006/prep.1994.1062. [DOI] [PubMed] [Google Scholar]
  10. Folkers G., Trumpp-Kallmeyer S., Gutbrod O., Krickl S., Fetzer J., Keil G. M. Computer-aided active-site-directed modeling of the herpes simplex virus 1 and human thymidine kinase. J Comput Aided Mol Des. 1991 Oct;5(5):385–404. doi: 10.1007/BF00125660. [DOI] [PubMed] [Google Scholar]
  11. Gentry G. A. Locating a nucleotide-binding site in the thymidine kinase of vaccinia virus and of herpes simplex virus by scoring triply aligned protein sequences. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6815–6819. doi: 10.1073/pnas.82.20.6815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graham D., Larder B. A., Inglis M. M. Evidence that the 'active centre' of the herpes simplex virus thymidine kinase involves an interaction between three distinct regions of the polypeptide. J Gen Virol. 1986 Apr;67(Pt 4):753–758. doi: 10.1099/0022-1317-67-4-753. [DOI] [PubMed] [Google Scholar]
  13. Halpern M. E., Smiley J. R. Effects of deletions on expression of the herpes simplex virus thymidine kinase gene from the intact viral genome: the amino terminus of the enzyme is dispensable for catalytic activity. J Virol. 1984 Jun;50(3):733–738. doi: 10.1128/jvi.50.3.733-738.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harrison P. T., Thompson R., Davison A. J. Evolution of herpesvirus thymidine kinases from cellular deoxycytidine kinase. J Gen Virol. 1991 Oct;72(Pt 10):2583–2586. doi: 10.1099/0022-1317-72-10-2583. [DOI] [PubMed] [Google Scholar]
  15. Ilsley D. D., Lee S. H., Miller W. H., Kuchta R. D. Acyclic guanosine analogs inhibit DNA polymerases alpha, delta, and epsilon with very different potencies and have unique mechanisms of action. Biochemistry. 1995 Feb 28;34(8):2504–2510. doi: 10.1021/bi00008a014. [DOI] [PubMed] [Google Scholar]
  16. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  17. Kit S. Thymidine kinase. Microbiol Sci. 1985 Dec;2(12):369–375. [PubMed] [Google Scholar]
  18. Maga G., Focher F., Wright G. E., Capobianco M., Garbesi A., Bendiscioli A., Spadari S. Kinetic studies with N2-phenylguanines and with L-thymidine indicate that herpes simplex virus type-1 thymidine kinase and thymidylate kinase share a common active site. Biochem J. 1994 Aug 15;302(Pt 1):279–282. doi: 10.1042/bj3020279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McKnight S. L. The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Res. 1980 Dec 20;8(24):5949–5964. doi: 10.1093/nar/8.24.5949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mittal S. K., Field H. J. Analysis of the bovine herpesvirus type 1 thymidine kinase (TK) gene from wild-type virus and TK-deficient mutants. J Gen Virol. 1989 Apr;70(Pt 4):901–918. doi: 10.1099/0022-1317-70-4-901. [DOI] [PubMed] [Google Scholar]
  21. Miyoshi K., Egi Y., Shioda T., Kawasaki T. Evidence for in vivo synthesis of thiamin triphosphate by cytosolic adenylate kinase in chicken skeletal muscle. J Biochem. 1990 Aug;108(2):267–270. doi: 10.1093/oxfordjournals.jbchem.a123192. [DOI] [PubMed] [Google Scholar]
  22. Munch-Petersen B., Tyrsted G., Cloos L. Reversible ATP-dependent transition between two forms of human cytosolic thymidine kinase with different enzymatic properties. J Biol Chem. 1993 Jul 25;268(21):15621–15625. [PubMed] [Google Scholar]
  23. Munir K. M., French D. C., Dube D. K., Loeb L. A. Permissible amino acid substitutions within the putative nucleoside binding site of herpes simplex virus type 1 encoded thymidine kinase established by random sequence mutagenesis [corrected]. J Biol Chem. 1992 Apr 5;267(10):6584–6589. [PubMed] [Google Scholar]
  24. Müller-Dieckmann H. J., Schulz G. E. Substrate specificity and assembly of the catalytic center derived from two structures of ligated uridylate kinase. J Mol Biol. 1995 Mar 3;246(4):522–530. doi: 10.1006/jmbi.1994.0104. [DOI] [PubMed] [Google Scholar]
  25. Müller C. W., Schulz G. E. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol. 1992 Mar 5;224(1):159–177. doi: 10.1016/0022-2836(92)90582-5. [DOI] [PubMed] [Google Scholar]
  26. Scheffzek K., Kliche W., Wiesmüller L., Reinstein J. Crystal structure of the complex of UMP/CMP kinase from Dictyostelium discoideum and the bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-uridyl) pentaphosphate (UP5A) and Mg2+ at 2.2 A: implications for water-mediated specificity. Biochemistry. 1996 Jul 30;35(30):9716–9727. doi: 10.1021/bi960642s. [DOI] [PubMed] [Google Scholar]
  27. Spadari S., Ciarrocchi G., Focher F., Verri A., Maga G., Arcamone F., Iafrate E., Manzini S., Garbesi A., Tondelli L. 5-Iodo-2'-deoxy-L-uridine and (E)-5-(2-bromovinyl)-2'-deoxy-L-uridine: selective phosphorylation by herpes simplex virus type 1 thymidine kinase, antiherpetic activity, and cytotoxicity studies. Mol Pharmacol. 1995 Jun;47(6):1231–1238. [PubMed] [Google Scholar]
  28. Spadari S., Maga G., Focher F., Ciarrocchi G., Manservigi R., Arcamone F., Capobianco M., Carcuro A., Colonna F., Iotti S. L-thymidine is phosphorylated by herpes simplex virus type 1 thymidine kinase and inhibits viral growth. J Med Chem. 1992 Oct 30;35(22):4214–4220. doi: 10.1021/jm00100a029. [DOI] [PubMed] [Google Scholar]
  29. Teplyakov A., Sebastiao P., Obmolova G., Perrakis A., Brush G. S., Bessman M. J., Wilson K. S. Crystal structure of bacteriophage T4 deoxynucleotide kinase with its substrates dGMP and ATP. EMBO J. 1996 Jul 15;15(14):3487–3497. [PMC free article] [PubMed] [Google Scholar]
  30. Vonrhein C., Schlauderer G. J., Schulz G. E. Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure. 1995 May 15;3(5):483–490. doi: 10.1016/s0969-2126(01)00181-2. [DOI] [PubMed] [Google Scholar]
  31. Wild K., Bohner T., Aubry A., Folkers G., Schulz G. E. The three-dimensional structure of thymidine kinase from herpes simplex virus type 1. FEBS Lett. 1995 Jul 17;368(2):289–292. doi: 10.1016/0014-5793(95)00680-8. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES