Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Oct;6(10):2084–2096. doi: 10.1002/pro.5560061004

Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: a comparison with NAD bound to the oxidoreductase enzymes.

C E Bell 1, T O Yeates 1, D Eisenberg 1
PMCID: PMC2143571  PMID: 9336832

Abstract

The conformation of NAD bound to diphtheria toxin (DT), an ADP-ribosylating enzyme, has been compared to the conformations of NAD(P) bound to 23 distinct NAD(P)-binding oxidoreductase enzymes, whose structures are available in the Brookhaven Protein Data Bank. For the oxidoreductase enzymes, NAD(P) functions as a cofactor in electron transfer, whereas for DT, NAD is a labile substrate in which the N-glycosidic bond between the nicotinamide ring and the N-ribose is cleaved. All NAD(P) conformations were compared by (1) visual inspection of superimposed molecules, (2) RMSD of atomic positions, (3) principal component analysis, and (4) analysis of torsion angles and other conformational parameters. Whereas the majority of oxidoreductase-bound NAD(P) conformations are found to be similar, the conformation of NAD bound to DT is found to be unusual. Distinctive features of the conformation of NAD bound to DT that may be relevant to DT's function as an ADP-ribosylating enzyme include (1) an unusually short distance between the PN and N1N atoms, reflecting a highly folded conformation for the nicotinamide mononucleotide (NMN) portion of NAD, and (2) a torsion angle chi N approximately 0 degree about the scissile N-glycosidic bond, placing the nicotinamide ring outside of the preferred anti and syn orientations. In NAD bound to DT, the highly folded NMN conformation and torsion angle chi N approximately 0 degree could contribute to catalysis, possibly by orienting the C1'N atom of NAD for nucleophilic attack, or by placing strain on the N-glycosidic bond, which is cleaved by DT. The unusual overall conformation of NAD bound to DT is likely to reflect the structure of DT, which is unusual among NAD(P)-binding enzymes. In DT, the NAD binding site is formed at the junction of two antiparallel beta-sheets. In contrast, although the 24 oxidoreductase enzymes belong to at least six different structural classes, almost all of them bind NAD(P) at the C-terminal end of a parallel beta-sheet. The structural alignments and principal component analysis show that enzymes of the same structural class bind to particularly similar conformations of NAD(P), with few exceptions. The conformation of NAD bound to DT superimposes closely with that of an NAD analogue bound to Pseudomonas exotoxin A, an ADP-ribosylating toxin that is structurally homologous to DT. This suggests that all of the ADP-ribosylating enzymes that are structurally homologous to DT and ETA will bind a highly similar conformation of NAD.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. J., Ellis G. H., Gover S., Naylor C. E., Phillips C. Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Structure. 1994 Jul 15;2(7):651–668. doi: 10.1016/s0969-2126(00)00066-6. [DOI] [PubMed] [Google Scholar]
  2. Bell C. E., Eisenberg D. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry. 1996 Jan 30;35(4):1137–1149. doi: 10.1021/bi9520848. [DOI] [PubMed] [Google Scholar]
  3. Dessen A., Quémard A., Blanchard J. S., Jacobs W. R., Jr, Sacchettini J. C. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995 Mar 17;267(5204):1638–1641. doi: 10.1126/science.7886450. [DOI] [PubMed] [Google Scholar]
  4. Eklund H., Samama J. P., Jones T. A. Crystallographic investigations of nicotinamide adenine dinucleotide binding to horse liver alcohol dehydrogenase. Biochemistry. 1984 Dec 4;23(25):5982–5996. doi: 10.1021/bi00320a014. [DOI] [PubMed] [Google Scholar]
  5. Fita I., Rossmann M. G. The NADPH binding site on beef liver catalase. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1604–1608. doi: 10.1073/pnas.82.6.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gouet P., Jouve H. M., Dideberg O. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J Mol Biol. 1995 Jun 23;249(5):933–954. doi: 10.1006/jmbi.1995.0350. [DOI] [PubMed] [Google Scholar]
  7. Hurley J. H., Dean A. M. Structure of 3-isopropylmalate dehydrogenase in complex with NAD+: ligand-induced loop closing and mechanism for cofactor specificity. Structure. 1994 Nov 15;2(11):1007–1016. doi: 10.1016/s0969-2126(94)00104-9. [DOI] [PubMed] [Google Scholar]
  8. Karplus P. A., Schulz G. E. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution. J Mol Biol. 1989 Nov 5;210(1):163–180. doi: 10.1016/0022-2836(89)90298-2. [DOI] [PubMed] [Google Scholar]
  9. Kelly C. A., Nishiyama M., Ohnishi Y., Beppu T., Birktoft J. J. Determinants of protein thermostability observed in the 1.9-A crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. Biochemistry. 1993 Apr 20;32(15):3913–3922. doi: 10.1021/bi00066a010. [DOI] [PubMed] [Google Scholar]
  10. Lamzin V. S., Dauter Z., Popov V. O., Harutyunyan E. H., Wilson K. S. High resolution structures of holo and apo formate dehydrogenase. J Mol Biol. 1994 Feb 25;236(3):759–785. doi: 10.1006/jmbi.1994.1188. [DOI] [PubMed] [Google Scholar]
  11. Li M., Dyda F., Benhar I., Pastan I., Davies D. R. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6902–6906. doi: 10.1073/pnas.93.14.6902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin G. H., Sundaralingam M., Arora S. K. Stereochemistry of nucleic acids and their constituents. XV. Crystal and molecular structure of 2-thiocytidine dihydrate, a minor constituent of transfer ribonucleic acid. J Am Chem Soc. 1971 Mar 10;93(5):1235–1241. doi: 10.1021/ja00734a035. [DOI] [PubMed] [Google Scholar]
  13. Lo A., Shefter E., Cochran T. G. Analysis of N-glycosyl bond length in crystal structures of nucleosides and nucleotides. J Pharm Sci. 1975 Oct;64(10):1707–1710. doi: 10.1002/jps.2600641029. [DOI] [PubMed] [Google Scholar]
  14. Lory S., Carroll S. F., Bernard P. D., Collier R. J. Ligand interactions of diphtheria toxin. I. Binding and hydrolysis of NAD. J Biol Chem. 1980 Dec 25;255(24):12011–12015. [PubMed] [Google Scholar]
  15. Mattevi A., Obmolova G., Sokatch J. R., Betzel C., Hol W. G. The refined crystal structure of Pseudomonas putida lipoamide dehydrogenase complexed with NAD+ at 2.45 A resolution. Proteins. 1992 Aug;13(4):336–351. doi: 10.1002/prot.340130406. [DOI] [PubMed] [Google Scholar]
  16. Niefind K., Hecht H. J., Schomburg D. Crystal structure of L-2-hydroxyisocaproate dehydrogenase from Lactobacillus confusus at 2.2 A resolution. An example of strong asymmetry between subunits. J Mol Biol. 1995 Aug 11;251(2):256–281. doi: 10.1006/jmbi.1995.0433. [DOI] [PubMed] [Google Scholar]
  17. Scapin G., Blanchard J. S., Sacchettini J. C. Three-dimensional structure of Escherichia coli dihydrodipicolinate reductase. Biochemistry. 1995 Mar 21;34(11):3502–3512. doi: 10.1021/bi00011a003. [DOI] [PubMed] [Google Scholar]
  18. Stehle T., Claiborne A., Schulz G. E. NADH binding site and catalysis of NADH peroxidase. Eur J Biochem. 1993 Jan 15;211(1-2):221–226. doi: 10.1111/j.1432-1033.1993.tb19889.x. [DOI] [PubMed] [Google Scholar]
  19. Thorn J. M., Barton J. D., Dixon N. E., Ollis D. L., Edwards K. J. Crystal structure of Escherichia coli QOR quinone oxidoreductase complexed with NADPH. J Mol Biol. 1995 Jun 16;249(4):785–799. doi: 10.1006/jmbi.1995.0337. [DOI] [PubMed] [Google Scholar]
  20. Van Ness B. G., Howard J. B., Bodley J. W. ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J Biol Chem. 1980 Nov 25;255(22):10710–10716. [PubMed] [Google Scholar]
  21. Varughese K. I., Skinner M. M., Whiteley J. M., Matthews D. A., Xuong N. H. Crystal structure of rat liver dihydropteridine reductase. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6080–6084. doi: 10.1073/pnas.89.13.6080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Waksman G., Krishna T. S., Williams C. H., Jr, Kuriyan J. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. J Mol Biol. 1994 Feb 25;236(3):800–816. [PubMed] [Google Scholar]
  23. Webb L. E., Hill E. J., Banaszak L. J. Conformation of nicotinamide adenine dinucleotide bound to cytoplasmic malate dehydrogenase. Biochemistry. 1973 Dec 4;12(25):5101–5109. doi: 10.1021/bi00749a013. [DOI] [PubMed] [Google Scholar]
  24. Wilson B. A., Reich K. A., Weinstein B. R., Collier R. J. Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine. Biochemistry. 1990 Sep 18;29(37):8643–8651. doi: 10.1021/bi00489a021. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES