Abstract
Parvalbumins are a class of calcium-binding proteins characterized by the presence of several helix-loop-helix (EF-hand) motifs. It is suspected that these proteins evolved via intragene duplication from a single EF-hand. Silver hake parvalbumin (SHPV) consists of three EF-type helix-loop-helix regions, two of which have the ability to bind calcium. The three helix-loop-helix motifs are designated AB, CD, and EF, respectively. In this study, native silver hake parvalbumin isoform B (SHPV-B) has been sequenced by mass spectrometry. The sequence indicates that this parvalbumin is a beta-lineage parvalbumin. SHPV-B was cleaved into two major fragments, consisting of the ABCD and EF regions of the native protein. The 33-amino acid EF fragment (residues 76-108), containing one of the calcium ion binding sites in native SHPV-B, has been isolated and studied for its structural characteristics, ability to bind divalent and trivalent cations, and for its propensity to undergo metal ion-induced self-association. The presence of Ca2+ does not induce significant secondary structure in the EF fragment. However, NMR and CD results indicate significant secondary structure promotion in the EF fragment in the presence of the higher charge-density trivalent cations. Sedimentation equilibrium analysis results show that the EF fragment exists in a monomer-dimer equilibrium when complexed with La3+.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Capony J. P., Rydèn L., Demaille J., Pechère J. F. The primary structure of the major parvalbumin from hake muscle. Overlapping peptides obtained with chemical and enzymatic methods. The complete amino-acid sequence. Eur J Biochem. 1973 Jan 3;32(1):97–108. doi: 10.1111/j.1432-1033.1973.tb02584.x. [DOI] [PubMed] [Google Scholar]
- Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
- Coffee C. J., Bradshaw R. A. Carp muscle calcium-binding protein. I. Characterization of the tryptic peptides and the complete amino acid sequence of component B. J Biol Chem. 1973 May 10;248(9):3305–3312. [PubMed] [Google Scholar]
- Cox J. A., Milos M., MacManus J. P. Calcium- and magnesium-binding properties of oncomodulin. Direct binding studies and microcalorimetry. J Biol Chem. 1990 Apr 25;265(12):6633–6637. [PubMed] [Google Scholar]
- Declercq J. P., Tinant B., Parello J., Rambaud J. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. J Mol Biol. 1991 Aug 20;220(4):1017–1039. doi: 10.1016/0022-2836(91)90369-h. [DOI] [PubMed] [Google Scholar]
- Derancourt J., Haiech J., Pechère J. F. Binding of calcium by parvalbumin fragments. Biochim Biophys Acta. 1978 Feb 15;532(2):373–375. doi: 10.1016/0005-2795(78)90592-5. [DOI] [PubMed] [Google Scholar]
- Drake S. K., Falke J. J. Kinetic tuning of the EF-hand calcium binding motif: the gateway residue independently adjusts (i) barrier height and (ii) equilibrium. Biochemistry. 1996 Feb 13;35(6):1753–1760. doi: 10.1021/bi952335c. [DOI] [PubMed] [Google Scholar]
- Drakenberg T., Swärd M., Cavé A., Parello J. Metal-ion binding to parvalbumin. A 113Cd-n.m.r. study of the binding of different lanthanide ions. Biochem J. 1985 May 1;227(3):711–717. doi: 10.1042/bj2270711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durussel I., Luan-Rilliet Y., Petrova T., Takagi T., Cox J. A. Cation binding and conformation of tryptic fragments of Nereis sarcoplasmic calcium-binding protein: calcium-induced homo- and heterodimerization. Biochemistry. 1993 Mar 9;32(9):2394–2400. doi: 10.1021/bi00060a034. [DOI] [PubMed] [Google Scholar]
- Eberspach I., Strassburger W., Glatter U., Gerday C., Wollmer A. Interaction of parvalbumin of pike II with calcium and terbium ions. Biochim Biophys Acta. 1988 Jan 4;952(1):67–76. doi: 10.1016/0167-4838(88)90102-1. [DOI] [PubMed] [Google Scholar]
- Falke J. J., Drake S. K., Hazard A. L., Peersen O. B. Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys. 1994 Aug;27(3):219–290. doi: 10.1017/s0033583500003012. [DOI] [PubMed] [Google Scholar]
- Filimonov V. V., Pfeil W., Tsalkova T. N., Privalov P. L. Thermodynamic investigations of proteins. IV. Calcium binding protein parvalbumin. Biophys Chem. 1978 May;8(2):117–122. doi: 10.1016/0301-4622(78)80003-9. [DOI] [PubMed] [Google Scholar]
- Finn B. E., Kördel J., Thulin E., Sellers P., Forsén S. Dissection of calbindin D9k into two Ca(2+)-binding subdomains by a combination of mutagenesis and chemical cleavage. FEBS Lett. 1992 Feb 24;298(2-3):211–214. doi: 10.1016/0014-5793(92)80059-p. [DOI] [PubMed] [Google Scholar]
- Gariépy J., Kay L. E., Kuntz I. D., Sykes B. D., Hodges R. S. Nuclear magnetic resonance determination of metal-proton distances in a synthetic calcium binding site of rabbit skeletal troponin C. Biochemistry. 1985 Jan 15;24(2):544–550. doi: 10.1021/bi00323a045. [DOI] [PubMed] [Google Scholar]
- Gariépy J., Sykes B. D., Hodges R. S. Lanthanide-induced peptide folding: variations in lanthanide affinity and induced peptide conformation. Biochemistry. 1983 Apr 12;22(8):1765–1772. doi: 10.1021/bi00277a004. [DOI] [PubMed] [Google Scholar]
- Gariépy J., Sykes B. D., Reid R. E., Hodges R. S. Proton nuclear magnetic resonance investigation of synthetic calcium-binding peptides. Biochemistry. 1982 Mar 30;21(7):1506–1512. doi: 10.1021/bi00536a007. [DOI] [PubMed] [Google Scholar]
- George S. E., Su Z., Fan D., Means A. R. Calmodulin-cardiac troponin C chimeras. Effects of domain exchange on calcium binding and enzyme activation. J Biol Chem. 1993 Nov 25;268(33):25213–25220. [PubMed] [Google Scholar]
- Gerday C. The primary structure of the parvalbumin II of pike (Esox lucius). Eur J Biochem. 1976 Nov 1;70(1):305–318. doi: 10.1111/j.1432-1033.1976.tb10982.x. [DOI] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Gilles A. M., Imhoff J. M., Keil B. alpha-Clostripain. Chemical characterization, activity, and thiol content of the highly active form of clostripain. J Biol Chem. 1979 Mar 10;254(5):1462–1468. [PubMed] [Google Scholar]
- Hutnik C. M., MacManus J. P., Szabo A. G. A calcium-specific conformational response of parvalbumin. Biochemistry. 1990 Aug 7;29(31):7318–7328. doi: 10.1021/bi00483a023. [DOI] [PubMed] [Google Scholar]
- Joassin L., Gerday C. The amino acid sequence of the major parvalbumin of the whiting (Gadus merlangus). Comp Biochem Physiol B. 1977;57(2):159–161. doi: 10.1016/0305-0491(77)90166-3. [DOI] [PubMed] [Google Scholar]
- Kay L. E., Forman-Kay J. D., McCubbin W. D., Kay C. M. Solution structure of a polypeptide dimer comprising the fourth Ca(2+)-binding site of troponin C by nuclear magnetic resonance spectroscopy. Biochemistry. 1991 Apr 30;30(17):4323–4333. doi: 10.1021/bi00231a031. [DOI] [PubMed] [Google Scholar]
- Kippen A. D., Sancho J., Fersht A. R. Folding of barnase in parts. Biochemistry. 1994 Mar 29;33(12):3778–3786. doi: 10.1021/bi00178a039. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
- Kretsinger R. H. Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem. 1980;8(2):119–174. doi: 10.3109/10409238009105467. [DOI] [PubMed] [Google Scholar]
- Kumar V. D., Lee L., Edwards B. F. Refined crystal structure of calcium-liganded carp parvalbumin 4.25 at 1.5-A resolution. Biochemistry. 1990 Feb 13;29(6):1404–1412. doi: 10.1021/bi00458a010. [DOI] [PubMed] [Google Scholar]
- Leavis P. C., Rosenfeld S. S., Gergely J., Grabarek Z., Drabikowski W. Proteolytic fragments of troponin C. Localization of high and low affinity Ca2+ binding sites and interactions with troponin I and troponin T. J Biol Chem. 1978 Aug 10;253(15):5452–5459. [PubMed] [Google Scholar]
- Lee L., Corson D. C., Sykes B. D. Structural studies of calcium-binding proteins using nuclear magnetic resonance. Biophys J. 1985 Feb;47(2 Pt 1):139–142. doi: 10.1016/s0006-3495(85)83887-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee L., Sykes B. D. Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin. Biochemistry. 1983 Sep 13;22(19):4366–4373. doi: 10.1021/bi00288a004. [DOI] [PubMed] [Google Scholar]
- Linse S., Thulin E., Sellers P. Disulfide bonds in homo- and heterodimers of EF-hand subdomains of calbindin D9k: stability, calcium binding, and NMR studies. Protein Sci. 1993 Jun;2(6):985–1000. doi: 10.1002/pro.5560020612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller T. L., Cook R. M., Nelson D. J., Theoharides A. D. Terbium luminescence from the calcium binding sites of parvalbumin. J Mol Biol. 1980 Aug 5;141(2):223–226. doi: 10.1016/0022-2836(80)90387-3. [DOI] [PubMed] [Google Scholar]
- Mitchell W. M., Harrington W. F. Purification and properties of clostridiopeptidase B (Clostripain). J Biol Chem. 1968 Sep 25;243(18):4683–4692. [PubMed] [Google Scholar]
- Padilla A., Cavé A., Parello J. Two-dimensional 1H nuclear magnetic resonance study of pike pI 5.0 parvalbumin (Esox lucius). Sequential resonance assignments and folding of the polypeptide chain. J Mol Biol. 1988 Dec 20;204(4):995–1017. doi: 10.1016/0022-2836(88)90057-5. [DOI] [PubMed] [Google Scholar]
- Pechére J. F., Demaille J., Capony J. P. Muscular parvalbumins: preparative and analytical methods of general applicability. Biochim Biophys Acta. 1971 May 25;236(2):391–408. doi: 10.1016/0005-2795(71)90220-0. [DOI] [PubMed] [Google Scholar]
- Ragg E., Cavé A., Drakenberg T. Metal ion binding to parvalbumin. A proton NMR study. Acta Chem Scand B. 1986;40(1):6–14. doi: 10.3891/acta.chem.scand.40b-0006. [DOI] [PubMed] [Google Scholar]
- Reid R. E., Gariépy J., Saund A. K., Hodges R. S. Calcium-induced protein folding. Structure-affinity relationships in synthetic analogs of the helix-loop-helix calcium binding unit. J Biol Chem. 1981 Mar 25;256(6):2742–2751. [PubMed] [Google Scholar]
- Reid R. E. Synthetic fragments of calmodulin calcium-binding site III. A test of the acid pair hypothesis. J Biol Chem. 1990 Apr 15;265(11):5971–5976. [PubMed] [Google Scholar]
- Renner M., Danielson M. A., Falke J. J. Kinetic control of Ca(II) signaling: tuning the ion dissociation rates of EF-hand Ca(II) binding sites. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6493–6497. doi: 10.1073/pnas.90.14.6493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rico M., Jiménez M. A., González C., De Filippis V., Fontana A. NMR solution structure of the C-terminal fragment 255-316 of thermolysin: a dimer formed by subunits having the native structure. Biochemistry. 1994 Dec 13;33(49):14834–14847. doi: 10.1021/bi00253a023. [DOI] [PubMed] [Google Scholar]
- Roongta V., Powers R., Jones C., Beakage M. J., Shields J. E., Gorenstein D. G. Solution conformation of a synthetic fragment of human pituitary growth hormone. Two-dimensional NMR of an alpha-helical dimer. Biochemistry. 1989 Feb 7;28(3):1048–1054. doi: 10.1021/bi00429a019. [DOI] [PubMed] [Google Scholar]
- Shaw G. S., Hodges R. S., Sykes B. D. Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. Science. 1990 Jul 20;249(4966):280–283. doi: 10.1126/science.2374927. [DOI] [PubMed] [Google Scholar]
- Shaw G. S., Hodges R. S., Sykes B. D. Determination of the solution structure of a synthetic two-site calcium-binding homodimeric protein domain by NMR spectroscopy. Biochemistry. 1992 Oct 13;31(40):9572–9580. doi: 10.1021/bi00155a009. [DOI] [PubMed] [Google Scholar]
- Shaw G. S., Hodges R. S., Sykes B. D. Stoichiometry of calcium binding to a synthetic heterodimeric troponin-C domain. Biopolymers. 1992 Apr;32(4):391–397. doi: 10.1002/bip.360320415. [DOI] [PubMed] [Google Scholar]
- Shaw G. S., Sykes B. D. NMR solution structure of a synthetic troponin C heterodimeric domain. Biochemistry. 1996 Jun 11;35(23):7429–7438. doi: 10.1021/bi9528006. [DOI] [PubMed] [Google Scholar]
- Shoemaker K. R., Fairman R., Kim P. S., York E. J., Stewart J. M., Baldwin R. L. The C-peptide helix from ribonuclease A considered as an autonomous folding unit. Cold Spring Harb Symp Quant Biol. 1987;52:391–398. doi: 10.1101/sqb.1987.052.01.045. [DOI] [PubMed] [Google Scholar]
- Struthers M. D., Cheng R. P., Imperiali B. Design of a monomeric 23-residue polypeptide with defined tertiary structure. Science. 1996 Jan 19;271(5247):342–345. doi: 10.1126/science.271.5247.342. [DOI] [PubMed] [Google Scholar]
- Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
- Tsalkova T. N., Privalov P. L. Thermodynamic study of domain organization in troponin C and calmodulin. J Mol Biol. 1985 Feb 20;181(4):533–544. doi: 10.1016/0022-2836(85)90425-5. [DOI] [PubMed] [Google Scholar]
- Tsuji T., Kaiser E. T. Design and synthesis of the pseudo-EF hand in calbindin D9K: effect of amino acid substitutions in the alpha-helical regions. Proteins. 1991;9(1):12–22. doi: 10.1002/prot.340090103. [DOI] [PubMed] [Google Scholar]
- Williams J., Moreton K. The dimerization of half-molecule fragments of transferrin. Biochem J. 1988 May 1;251(3):849–855. doi: 10.1042/bj2510849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Prat Gay G., Ruiz-Sanz J., Fersht A. R. Generation of a family of protein fragments for structure-folding studies. 2. Kinetics of association of the two chymotrypsin inhibitor-2 fragments. Biochemistry. 1994 Jun 28;33(25):7964–7970. doi: 10.1021/bi00191a025. [DOI] [PubMed] [Google Scholar]