Abstract
The structure of pig pancreatic alpha-amylase in complex with carbohydrate inhibitor and proteinaceous inhibitors is known but the successive events occurring at the catalytic center still remain to be elucidated. The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) soaked with an enzyme-resistant substrate analogue, methyl 4,4'-dithio-alpha-maltotrioside, showed electron density corresponding to the binding of substrate analogue molecules at the active site and at the "second binding site." The electron density observed at the active site was interpreted in terms of overlapping networks of oligosaccharides, which show binding of substrate analogue molecules at subsites prior to and subsequent to the cleavage site. A weaker patch of density observed at subsite -1 (using a nomenclature where the site of hydrolysis is taken to be between subsites -1 and +1) was modeled with water molecules. Conformational changes take place upon substrate analogue binding and the "flexible loop" that constitutes the surface edge of the active site is observed in a specific conformation. This confirms that this loop plays an important role in the recognition and binding of the ligand. The crystal structure was refined at 2.03 A resolution, to an R-factor of 16.0 (Rfree, 18.5).
Full Text
The Full Text of this article is available as a PDF (6.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alkazaz M., Desseaux V., Marchis-Mouren G., Payan F., Forest E., Santimone M. The mechanism of porcine pancreatic alpha-amylase. Kinetic evidence for two additional carbohydrate-binding sites. Eur J Biochem. 1996 Nov 1;241(3):787–796. doi: 10.1111/j.1432-1033.1996.00787.x. [DOI] [PubMed] [Google Scholar]
- Bompard-Gilles C., Rousseau P., Rougé P., Payan F. Substrate mimicry in the active center of a mammalian alpha-amylase: structural analysis of an enzyme-inhibitor complex. Structure. 1996 Dec 15;4(12):1441–1452. doi: 10.1016/s0969-2126(96)00151-7. [DOI] [PubMed] [Google Scholar]
- Brayer G. D., Luo Y., Withers S. G. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995 Sep;4(9):1730–1742. doi: 10.1002/pro.5560040908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
- Cozzone P., Paséro L., Marchis-Mouren G. Characterization of porcine pancreatic isoamylases: separation and amino acid composition. Biochim Biophys Acta. 1970 Mar 31;200(3):590–593. doi: 10.1016/0005-2795(70)90121-2. [DOI] [PubMed] [Google Scholar]
- Davies G. J., Wilson K. S., Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. 1997 Jan 15;321(Pt 2):557–559. doi: 10.1042/bj3210557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilles C., Astier J. P., Marchis-Mouren G., Cambillau C., Payan F. Crystal structure of pig pancreatic alpha-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Eur J Biochem. 1996 Jun 1;238(2):561–569. doi: 10.1111/j.1432-1033.1996.0561z.x. [DOI] [PubMed] [Google Scholar]
- Ishikawa K., Matsui I., Kobayashi S., Nakatani H., Honda K. Substrate recognition at the binding site in mammalian pancreatic alpha-amylases. Biochemistry. 1993 Jun 22;32(24):6259–6265. doi: 10.1021/bi00075a020. [DOI] [PubMed] [Google Scholar]
- Kluh I. Amino acid sequence of hog pancreatic alpha-amylase isoenzyme I. FEBS Lett. 1981 Dec 28;136(2):231–234. doi: 10.1016/0014-5793(81)80624-2. [DOI] [PubMed] [Google Scholar]
- Levitzki A., Steer M. L. The allosteric activation of mammalian alpha-amylase by chloride. Eur J Biochem. 1974 Jan 3;41(1):171–180. doi: 10.1111/j.1432-1033.1974.tb03257.x. [DOI] [PubMed] [Google Scholar]
- Machius M., Vértesy L., Huber R., Wiegand G. Carbohydrate and protein-based inhibitors of porcine pancreatic alpha-amylase: structure analysis and comparison of their binding characteristics. J Mol Biol. 1996 Jul 19;260(3):409–421. doi: 10.1006/jmbi.1996.0410. [DOI] [PubMed] [Google Scholar]
- McCarter J. D., Withers S. G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994 Dec;4(6):885–892. doi: 10.1016/0959-440x(94)90271-2. [DOI] [PubMed] [Google Scholar]
- McCarter J. D., Withers S. G. Unequivocal identification of Asp-214 as the catalytic nucleophile of Saccharomyces cerevisiae alpha-glucosidase using 5-fluoro glycosyl fluorides. J Biol Chem. 1996 Mar 22;271(12):6889–6894. doi: 10.1074/jbc.271.12.6889. [DOI] [PubMed] [Google Scholar]
- Pasero L., Mazzéi-Pierron Y., Abadie B., Chicheportiche Y., Marchis-Mouren G. Complete amino acid sequence and location of the five disulfide bridges in porcine pancreatic alpha-amylase. Biochim Biophys Acta. 1986 Jan 30;869(2):147–157. doi: 10.1016/0167-4838(86)90289-x. [DOI] [PubMed] [Google Scholar]
- Prodanov E., Seigner C., Marchis-Mouren G. Subsite profile of the active center of porcine pancreatic alpha-amylase. Kinetic studies using maltooligosaccharides as substrates. Biochem Biophys Res Commun. 1984 Jul 18;122(1):75–81. doi: 10.1016/0006-291x(84)90441-8. [DOI] [PubMed] [Google Scholar]
- Qian M., Haser R., Buisson G., Duée E., Payan F. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-A resolution. Biochemistry. 1994 May 24;33(20):6284–6294. doi: 10.1021/bi00186a031. [DOI] [PubMed] [Google Scholar]
- Qian M., Haser R., Payan F. Carbohydrate binding sites in a pancreatic alpha-amylase-substrate complex, derived from X-ray structure analysis at 2.1 A resolution. Protein Sci. 1995 Apr;4(4):747–755. doi: 10.1002/pro.5560040414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian M., Haser R., Payan F. Structure and molecular model refinement of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol. 1993 Jun 5;231(3):785–799. doi: 10.1006/jmbi.1993.1326. [DOI] [PubMed] [Google Scholar]
- Ramasubbu N., Paloth V., Luo Y., Brayer G. D., Levine M. J. Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):435–446. doi: 10.1107/S0907444995014119. [DOI] [PubMed] [Google Scholar]
- Robyt J. F., French D. The action pattern of porcine pancreatic alpha-amylase in relationship to the substrate binding site of the enzyme. J Biol Chem. 1970 Aug 10;245(15):3917–3927. [PubMed] [Google Scholar]
- Steer M. L., Levitzki A. The metal specificity of mammalian -amylase as revealed by enzyme activity and structural probes. FEBS Lett. 1973 Apr 1;31(1):89–92. doi: 10.1016/0014-5793(73)80079-1. [DOI] [PubMed] [Google Scholar]
- Strokopytov B., Penninga D., Rozeboom H. J., Kalk K. H., Dijkhuizen L., Dijkstra B. W. X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases. Biochemistry. 1995 Feb 21;34(7):2234–2240. doi: 10.1021/bi00007a018. [DOI] [PubMed] [Google Scholar]
- Sulzenbacher G., Driguez H., Henrissat B., Schülein M., Davies G. J. Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry. 1996 Dec 3;35(48):15280–15287. doi: 10.1021/bi961946h. [DOI] [PubMed] [Google Scholar]
- Svensson B. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol. 1994 May;25(2):141–157. doi: 10.1007/BF00023233. [DOI] [PubMed] [Google Scholar]
- VALLEE B. L., STEIN E. A., SUMERWELL W. N., FISCHER E. H. Metal content of alpha-amylases of various origins. J Biol Chem. 1959 Nov;234:2901–2905. [PubMed] [Google Scholar]