Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Nov;6(11):2459–2461. doi: 10.1002/pro.5560061120

Pilin C-terminal peptide binds asialo-GM1 in liposomes: a 2H-NMR study.

D H Jones 1, R S Hodges 1, K R Barber 1, C W Grant 1
PMCID: PMC2143583  PMID: 9385649

Abstract

Wideline 2H-NMR observations are described demonstrating the interaction of a synthetic peptide (PAK), representing residues 128-144 of the binding domain of pilin surface protein from Pseudomonas aeruginosa, with a complex glycosphingolipid thought to be its natural receptor. The receptor glycolipid (asialo-GM1) carried 2H probe nuclei on the terminal and next-to-terminal carbohydrate residues and was present as a minor component in fluid phosphatidylcholine liposomes. The peptide induced spectral changes that could be understood as arising from receptor motional changes, without receptor immobilization on the NMR time scale of 10(4) s-1. Spectral effects were reversed by reduction of the single peptide disulfide bond--a structural feature previously shown to be a determinant of PAK conformation (Campbell AP, McInnes C, Hodges RS, Sykes BD. 1995. Biochemistry 34:16255-16268). This is the first demonstration of PAK interaction with its epithelial cell receptor in liposomes.

Full Text

The Full Text of this article is available as a PDF (275.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aubin Y., Ito Y., Paulson J. C., Prestegard J. H. Structure and dynamics of the sialic acid moiety of GM3-ganglioside at the surface of a magnetically oriented membrane. Biochemistry. 1993 Dec 14;32(49):13405–13413. doi: 10.1021/bi00212a005. [DOI] [PubMed] [Google Scholar]
  2. Auger M., Van Calsteren M. R., Smith I. C., Jarrell H. C. Glycerolipids: common features of molecular motion in bilayers. Biochemistry. 1990 Jun 19;29(24):5815–5821. doi: 10.1021/bi00476a024. [DOI] [PubMed] [Google Scholar]
  3. Baker N., Hansson G. C., Leffler H., Riise G., Svanborg-Edén C. Glycosphingolipid receptors for Pseudomonas aeruginosa. Infect Immun. 1990 Jul;58(7):2361–2366. doi: 10.1128/iai.58.7.2361-2366.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell A. P., McInnes C., Hodges R. S., Sykes B. D. Comparison of NMR solution structures of the receptor binding domains of Pseudomonas aeruginosa pili strains PAO, KB7, and PAK: implications for receptor binding and synthetic vaccine design. Biochemistry. 1995 Dec 19;34(50):16255–16268. doi: 10.1021/bi00050a005. [DOI] [PubMed] [Google Scholar]
  5. Davis P. J., Keough K. M. Chain arrangements in the gel state and the transition temperatures of phosphatidylcholines. Biophys J. 1985 Dec;48(6):915–918. doi: 10.1016/S0006-3495(85)83854-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jarrell H., Singh D., Grant C. W. Oligosaccharide order in a membrane-incorporated complex glycosphingolipid. Biochim Biophys Acta. 1992 Jan 31;1103(2):331–334. doi: 10.1016/0005-2736(92)90105-u. [DOI] [PubMed] [Google Scholar]
  7. Jones D. H., Barber K. R., Grant C. W. Minor influence of sialic acid on conformation of a membrane-bound oligosaccharide recognition site. Biochemistry. 1996 Apr 16;35(15):4803–4811. doi: 10.1021/bi952964m. [DOI] [PubMed] [Google Scholar]
  8. Krivan H. C., Ginsburg V., Roberts D. D. Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch Biochem Biophys. 1988 Jan;260(1):493–496. doi: 10.1016/0003-9861(88)90473-0. [DOI] [PubMed] [Google Scholar]
  9. Lee K. K., Sheth H. B., Wong W. Y., Sherburne R., Paranchych W., Hodges R. S., Lingwood C. A., Krivan H., Irvin R. T. The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol. 1994 Feb;11(4):705–713. doi: 10.1111/j.1365-2958.1994.tb00348.x. [DOI] [PubMed] [Google Scholar]
  10. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  11. Siminovitch D. J., Ruocco M. J., Olejniczak E. T., Das Gupta S. K., Griffin R. G. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes. Biophys J. 1988 Sep;54(3):373–381. doi: 10.1016/S0006-3495(88)82970-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wong W. Y., Campbell A. P., McInnes C., Sykes B. D., Paranchych W., Irvin R. T., Hodges R. S. Structure-function analysis of the adherence-binding domain on the pilin of Pseudomonas aeruginosa strains PAK and KB7. Biochemistry. 1995 Oct 10;34(40):12963–12972. doi: 10.1021/bi00040a006. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES