Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Nov;6(11):2454–2458. doi: 10.1002/pro.5560061119

Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding.

M H Eppink 1, H A Schreuder 1, W J Van Berkel 1
PMCID: PMC2143585  PMID: 9385648

Abstract

A novel conserved sequence motif has been located among the flavoprotein hydroxylases. Based on the crystal structure and site-directed mutagenesis studies of p-hydroxybenzoate hydroxylase (PHBH) from Pseudomonas fluorescens, this amino acid fingerprint sequence is proposed to play a dual function in both FAD and NAD(P)H binding. In PHBH, the novel sequence motif (residues 153-166) includes strand A4 and the N-terminal part of helix H7. The conserved amino acids Asp 159, Gly 160, and Arg 166 are necessary for maintaining the structure. The backbone oxygen of Cys 158 and backbone nitrogens of Gly 160 and Phe 161 interact indirectly with the pyrophosphate moiety of FAD, whereas it is known from mutagenesis studies that the side chain of the moderately conserved His 162 is involved in NADPH binding.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen S. J., Quan S., Gowan B., Dabbs E. R. Monooxygenase-like sequence of a Rhodococcus equi gene conferring increased resistance to rifampin by inactivating this antibiotic. Antimicrob Agents Chemother. 1997 Jan;41(1):218–221. doi: 10.1128/aac.41.1.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blanco G., Pereda A., Brian P., Méndez C., Chater K. F., Salas J. A. A hydroxylase-like gene product contributes to synthesis of a polyketide spore pigment in Streptomyces halstedii. J Bacteriol. 1993 Dec;175(24):8043–8048. doi: 10.1128/jb.175.24.8043-8048.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouvier F., d'Harlingue A., Hugueney P., Marin E., Marion-Poll A., Camara B. Xanthophyll biosynthesis. Cloning, expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum). J Biol Chem. 1996 Nov 15;271(46):28861–28867. doi: 10.1074/jbc.271.46.28861. [DOI] [PubMed] [Google Scholar]
  4. Chaiyen P., Ballou D. P., Massey V. Gene cloning, sequence analysis, and expression of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7233–7238. doi: 10.1073/pnas.94.14.7233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Decker H., Haag S. Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tü2717, which carries the genes for biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J Bacteriol. 1995 Nov;177(21):6126–6136. doi: 10.1128/jb.177.21.6126-6136.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DiMarco A. A., Averhoff B. A., Kim E. E., Ornston L. N. Evolutionary divergence of pobA, the structural gene encoding p-hydroxybenzoate hydroxylase in an Acinetobacter calcoaceticus strain well-suited for genetic analysis. Gene. 1993 Mar 15;125(1):25–33. doi: 10.1016/0378-1119(93)90741-k. [DOI] [PubMed] [Google Scholar]
  7. Eggink G., Engel H., Vriend G., Terpstra P., Witholt B. Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol. 1990 Mar 5;212(1):135–142. doi: 10.1016/0022-2836(90)90310-I. [DOI] [PubMed] [Google Scholar]
  8. Entsch B., Nan Y., Weaich K., Scott K. F. Sequence and organization of pobA, the gene coding for p-hydroxybenzoate hydroxylase, an inducible enzyme from Pseudomonas aeruginosa. Gene. 1988 Nov 30;71(2):279–291. doi: 10.1016/0378-1119(88)90044-3. [DOI] [PubMed] [Google Scholar]
  9. Entsch B., van Berkel W. J. Structure and mechanism of para-hydroxybenzoate hydroxylase. FASEB J. 1995 Apr;9(7):476–483. doi: 10.1096/fasebj.9.7.7737455. [DOI] [PubMed] [Google Scholar]
  10. Eppink M. H., Schreuder H. A., Van Berkel W. J. Structure and function of mutant Arg44Lys of 4-hydroxybenzoate hydroxylase implications for NADPH binding. Eur J Biochem. 1995 Jul 1;231(1):157–165. doi: 10.1111/j.1432-1033.1995.0157f.x. [DOI] [PubMed] [Google Scholar]
  11. Filippini S., Solinas M. M., Breme U., Schlüter M. B., Gabellini D., Biamonti G., Colombo A. L., Garofano L. Streptomyces peucetius daunorubicin biosynthesis gene, dnrF: sequence and heterologous expression. Microbiology. 1995 Apr;141(Pt 4):1007–1016. doi: 10.1099/13500872-141-4-1007. [DOI] [PubMed] [Google Scholar]
  12. Haigler B. E., Suen W. C., Spain J. C. Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT. J Bacteriol. 1996 Oct;178(20):6019–6024. doi: 10.1128/jb.178.20.6019-6024.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hong Y. S., Hwang C. K., Hong S. K., Kim Y. H., Lee J. J. Molecular cloning and characterization of the aklavinone 11-hydroxylase gene of Streptomyces peucetius subsp. caesius ATCC 27952. J Bacteriol. 1994 Nov;176(22):7096–7101. doi: 10.1128/jb.176.22.7096-7101.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jandrositz A., Turnowsky F., Högenauer G. The gene encoding squalene epoxidase from Saccharomyces cerevisiae: cloning and characterization. Gene. 1991 Oct 30;107(1):155–160. doi: 10.1016/0378-1119(91)90310-8. [DOI] [PubMed] [Google Scholar]
  16. Kälin M., Neujahr H. Y., Weissmahr R. N., Sejlitz T., Jöhl R., Fiechter A., Reiser J. Phenol hydroxylase from Trichosporon cutaneum: gene cloning, sequence analysis, and functional expression in Escherichia coli. J Bacteriol. 1992 Nov;174(22):7112–7120. doi: 10.1128/jb.174.22.7112-7120.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kõiv V., Marits R., Heinaru A. Sequence analysis of the 2,4-dichlorophenol hydroxylase gene tfdB and 3,5-dichlorocatechol 1,2-dioxygenase gene tfdC of 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011. Gene. 1996 Oct 3;174(2):293–297. doi: 10.1016/0378-1119(96)00043-1. [DOI] [PubMed] [Google Scholar]
  18. Lee J., Oh J., Min K. R., Kim Y. Nucleotide sequence of salicylate hydroxylase gene and its 5'-flanking region of Pseudomonas putida KF715. Biochem Biophys Res Commun. 1996 Jan 17;218(2):544–548. doi: 10.1006/bbrc.1996.0097. [DOI] [PubMed] [Google Scholar]
  19. Marin E., Nussaume L., Quesada A., Gonneau M., Sotta B., Hugueney P., Frey A., Marion-Poll A. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 1996 May 15;15(10):2331–2342. [PMC free article] [PubMed] [Google Scholar]
  20. Nakahigashi K., Miyamoto K., Nishimura K., Inokuchi H. Isolation and characterization of a light-sensitive mutant of Escherichia coli K-12 with a mutation in a gene that is required for the biosynthesis of ubiquinone. J Bacteriol. 1992 Nov;174(22):7352–7359. doi: 10.1128/jb.174.22.7352-7359.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Niemi J., Mäntsälä P. Nucleotide sequences and expression of genes from Streptomyces purpurascens that cause the production of new anthracyclines in Streptomyces galilaeus. J Bacteriol. 1995 May;177(10):2942–2945. doi: 10.1128/jb.177.10.2942-2945.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orser C. S., Lange C. C., Xun L., Zahrt T. C., Schneider B. J. Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol. 1993 Jan;175(2):411–416. doi: 10.1128/jb.175.2.411-416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Perkins E. J., Gordon M. P., Caceres O., Lurquin P. F. Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol. 1990 May;172(5):2351–2359. doi: 10.1128/jb.172.5.2351-2359.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sakakibara J., Watanabe R., Kanai Y., Ono T. Molecular cloning and expression of rat squalene epoxidase. J Biol Chem. 1995 Jan 6;270(1):17–20. doi: 10.1074/jbc.270.1.17. [DOI] [PubMed] [Google Scholar]
  25. Schreuder H. A., Prick P. A., Wierenga R. K., Vriend G., Wilson K. S., Hol W. G., Drenth J. Crystal structure of the p-hydroxybenzoate hydroxylase-substrate complex refined at 1.9 A resolution. Analysis of the enzyme-substrate and enzyme-product complexes. J Mol Biol. 1989 Aug 20;208(4):679–696. doi: 10.1016/0022-2836(89)90158-7. [DOI] [PubMed] [Google Scholar]
  26. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  27. Seibold B., Matthes M., Eppink M. H., Lingens F., Van Berkel W. J., Müller R. 4-Hydroxybenzoate hydroxylase from Pseudomonas sp. CBS3. Purification, characterization, gene cloning, sequence analysis and assignment of structural features determining the coenzyme specificity. Eur J Biochem. 1996 Jul 15;239(2):469–478. doi: 10.1111/j.1432-1033.1996.0469u.x. [DOI] [PubMed] [Google Scholar]
  28. Shuman B., Dix T. A. Cloning, nucleotide sequence, and expression of a p-hydroxybenzoate hydroxylase isozyme gene from Pseudomonas fluorescens. J Biol Chem. 1993 Aug 15;268(23):17057–17062. [PubMed] [Google Scholar]
  29. Suzuki K., Mizuguchi M., Ohnishi K., Itagaki E. Structure of chromosomal DNA coding for Pseudomonas putida S-1 salicylate hydroxylase. Biochim Biophys Acta. 1996 Jul 31;1275(3):154–156. doi: 10.1016/0005-2728(96)00069-2. [DOI] [PubMed] [Google Scholar]
  30. Tsuji H., Oka T., Kimoto M., Hong Y. M., Natori Y., Ogawa T. Cloning and sequencing of cDNA encoding 4-aminobenzoate hydroxylase from Agaricus bisporus. Biochim Biophys Acta. 1996 Nov 11;1309(1-2):31–36. doi: 10.1016/s0167-4781(96)00131-5. [DOI] [PubMed] [Google Scholar]
  31. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
  32. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
  33. Wong C. M., Dilworth M. J., Glenn A. R. Cloning and sequencing show that 4-hydroxybenzoate hydroxylase (PobA) is required for uptake of 4-hydroxybenzoate in Rhizobium leguminosarum. Microbiology. 1994 Oct;140(Pt 10):2775–2786. doi: 10.1099/00221287-140-10-2775. [DOI] [PubMed] [Google Scholar]
  34. Yang K., Han L., Ayer S. W., Vining L. C. Accumulation of the angucycline antibiotic rabelomycin after disruption of an oxygenase gene in the jadomycin B biosynthetic gene cluster of Streptomyces venezuelae. Microbiology. 1996 Jan;142(Pt 1):123–132. doi: 10.1099/13500872-142-1-123. [DOI] [PubMed] [Google Scholar]
  35. You I. S., Ghosal D., Gunsalus I. C. Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3'-flanking region. Biochemistry. 1991 Feb 12;30(6):1635–1641. doi: 10.1021/bi00220a028. [DOI] [PubMed] [Google Scholar]
  36. van Berkel W., Westphal A., Eschrich K., Eppink M., de Kok A. Substitution of Arg214 at the substrate-binding site of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem. 1992 Dec 1;210(2):411–419. doi: 10.1111/j.1432-1033.1992.tb17436.x. [DOI] [PubMed] [Google Scholar]
  37. van der Bolt F. J., Drijfhout M. C., Eppink M. H., Hagen W. R., van Berkel W. J. Selective cysteine-->serine replacements in p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens allow the unambiguous assignment of Cys211 as the site of modification by spin-labeled p-chloromercuribenzoate. Protein Eng. 1994 Jun;7(6):801–804. doi: 10.1093/protein/7.6.801. [DOI] [PubMed] [Google Scholar]
  38. van der Laan J. M., Schreuder H. A., Swarte M. B., Wierenga R. K., Kalk K. H., Hol W. G., Drenth J. The coenzyme analogue adenosine 5-diphosphoribose displaces FAD in the active site of p-hydroxybenzoate hydroxylase. An x-ray crystallographic investigation. Biochemistry. 1989 Sep 5;28(18):7199–7205. doi: 10.1021/bi00444a011. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES