Abstract
A computational study of the five soybean beta-amylase X-ray structure reported so far revealed a peculiar conformational transition after substrate (or inhibitor) binding, which affects a segment of the beta-strand 6 (residues 341-343) in the (beta/alpha)8 molecular scaffold. Backbone distortions that involve considerable changes in the phi and psi angles were observed, as well as two sharp rotamer transitions for the Thr342 and Cys343 side chains. These changes caused the outermost CA-layer (at the C-terminal side of the barrel), which is involved in the catalysis, to shrink. Our observations strongly suggest that the 341FTC343 residue conformations in the free enzyme are not optimal for protein stability. Furthermore, as a result of conformational transitions in the ligand-binding process, there is a negative enthalpy change for these residues (-27 and -34 kcal/mol, after substrate or inhibitor binding, respectively). These findings support the proposed "stability-function" hypothesis for proteins that recognize a ligand (Shoichet BK, Baase WA, Kuroki R, Matthews BW. 1995. A relationship between protein stability and protein function. Proc Natl Acad Sci USA 92:452-456). They are also in good agreement with other experimental results in the literature that describe the role of the 341-343 segment in beta-amylase activity. Site-directed mutagenesis focused on these residues could be useful for undertaking functional studies of beta-amylase.
Full Text
The Full Text of this article is available as a PDF (4.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attwood T. K., Beck M. E. PRINTS--a protein motif fingerprint database. Protein Eng. 1994 Jul;7(7):841–848. doi: 10.1093/protein/7.7.841. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Blaber M., Zhang X. J., Lindstrom J. D., Pepiot S. D., Baase W. A., Matthews B. W. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. J Mol Biol. 1994 Jan 14;235(2):600–624. doi: 10.1006/jmbi.1994.1016. [DOI] [PubMed] [Google Scholar]
- Cleland W. W., Kreevoy M. M. Low-barrier hydrogen bonds and enzymic catalysis. Science. 1994 Jun 24;264(5167):1887–1890. doi: 10.1126/science.8009219. [DOI] [PubMed] [Google Scholar]
- Dominguez R., Souchon H., Spinelli S., Dauter Z., Wilson K. S., Chauvaux S., Béguin P., Alzari P. M. A common protein fold and similar active site in two distinct families of beta-glycanases. Nat Struct Biol. 1995 Jul;2(7):569–576. doi: 10.1038/nsb0795-569. [DOI] [PubMed] [Google Scholar]
- Domínguez R., Souchon H., Lascombe M., Alzari P. M. The crystal structure of a family 5 endoglucanase mutant in complexed and uncomplexed forms reveals an induced fit activation mechanism. J Mol Biol. 1996 Apr 19;257(5):1042–1051. doi: 10.1006/jmbi.1996.0222. [DOI] [PubMed] [Google Scholar]
- Gray T. M., Matthews B. W. Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins. J Mol Biol. 1984 May 5;175(1):75–81. doi: 10.1016/0022-2836(84)90446-7. [DOI] [PubMed] [Google Scholar]
- Gunasekaran K., Ramakrishnan C., Balaram P. Disallowed Ramachandran conformations of amino acid residues in protein structures. J Mol Biol. 1996 Nov 22;264(1):191–198. doi: 10.1006/jmbi.1996.0633. [DOI] [PubMed] [Google Scholar]
- Gómez J., Hilser V. J., Xie D., Freire E. The heat capacity of proteins. Proteins. 1995 Aug;22(4):404–412. doi: 10.1002/prot.340220410. [DOI] [PubMed] [Google Scholar]
- Herzberg O., Moult J. Analysis of the steric strain in the polypeptide backbone of protein molecules. Proteins. 1991;11(3):223–229. doi: 10.1002/prot.340110307. [DOI] [PubMed] [Google Scholar]
- Hobohm U., Sander C. Enlarged representative set of protein structures. Protein Sci. 1994 Mar;3(3):522–524. doi: 10.1002/pro.5560030317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobohm U., Scharf M., Schneider R., Sander C. Selection of representative protein data sets. Protein Sci. 1992 Mar;1(3):409–417. doi: 10.1002/pro.5560010313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janin J., Wodak S. Conformation of amino acid side-chains in proteins. J Mol Biol. 1978 Nov 5;125(3):357–386. doi: 10.1016/0022-2836(78)90408-4. [DOI] [PubMed] [Google Scholar]
- Mark A. E., van Gunsteren W. F. Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. J Mol Biol. 1994 Jul 8;240(2):167–176. doi: 10.1006/jmbi.1994.1430. [DOI] [PubMed] [Google Scholar]
- McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
- McGregor M. J., Islam S. A., Sternberg M. J. Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J Mol Biol. 1987 Nov 20;198(2):295–310. doi: 10.1016/0022-2836(87)90314-7. [DOI] [PubMed] [Google Scholar]
- Meiering E. M., Serrano L., Fersht A. R. Effect of active site residues in barnase on activity and stability. J Mol Biol. 1992 Jun 5;225(3):585–589. doi: 10.1016/0022-2836(92)90387-y. [DOI] [PubMed] [Google Scholar]
- Mikami B., Degano M., Hehre E. J., Sacchettini J. C. Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis. Biochemistry. 1994 Jun 28;33(25):7779–7787. [PubMed] [Google Scholar]
- Mikami B., Hehre E. J., Sato M., Katsube Y., Hirose M., Morita Y., Sacchettini J. C. The 2.0-A resolution structure of soybean beta-amylase complexed with alpha-cyclodextrin. Biochemistry. 1993 Jul 13;32(27):6836–6845. doi: 10.1021/bi00078a006. [DOI] [PubMed] [Google Scholar]
- Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
- Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
- Pujadas G., Ramírez F. M., Valero R., Palau J. Evolution of beta-amylase: patterns of variation and conservation in subfamily sequences in relation to parsimony mechanisms. Proteins. 1996 Aug;25(4):456–472. doi: 10.1002/prot.6. [DOI] [PubMed] [Google Scholar]
- Shoichet B. K., Baase W. A., Kuroki R., Matthews B. W. A relationship between protein stability and protein function. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):452–456. doi: 10.1073/pnas.92.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siggens K. W. Molecular cloning and characterization of the beta-amylase gene from Bacillus circulans. Mol Microbiol. 1987 Jul;1(1):86–91. doi: 10.1111/j.1365-2958.1987.tb00531.x. [DOI] [PubMed] [Google Scholar]
- Smith T. J. MolView: a program for analyzing and displaying atomic structures on the Macintosh personal computer. J Mol Graph. 1995 Apr;13(2):122-5, 115. doi: 10.1016/0263-7855(94)00019-o. [DOI] [PubMed] [Google Scholar]
- Terwisscha van Scheltinga A. C., Armand S., Kalk K. H., Isogai A., Henrissat B., Dijkstra B. W. Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry. 1995 Dec 5;34(48):15619–15623. doi: 10.1021/bi00048a003. [DOI] [PubMed] [Google Scholar]
- Totsuka A., Fukazawa C. Functional analysis of Glu380 and Leu383 of soybean beta-amylase. A proposed action mechanism. Eur J Biochem. 1996 Sep 15;240(3):655–659. doi: 10.1111/j.1432-1033.1996.0655h.x. [DOI] [PubMed] [Google Scholar]
- Totsuka A., Nong V. H., Kadokawa H., Kim C. S., Itoh Y., Fukazawa C. Residues essential for catalytic activity of soybean beta-amylase. Eur J Biochem. 1994 Apr 15;221(2):649–654. doi: 10.1111/j.1432-1033.1994.tb18777.x. [DOI] [PubMed] [Google Scholar]
- Uozumi N., Matsuda T., Tsukagoshi N., Udaka S. Structural and functional roles of cysteine residues of Bacillus polymyxa beta-amylase. Biochemistry. 1991 May 7;30(18):4594–4599. doi: 10.1021/bi00232a033. [DOI] [PubMed] [Google Scholar]
- Viguera A. R., Serrano L. Side-chain interactions between sulfur-containing amino acids and phenylalanine in alpha-helices. Biochemistry. 1995 Jul 11;34(27):8771–8779. doi: 10.1021/bi00027a028. [DOI] [PubMed] [Google Scholar]
- Warshel A., Sussman F., Hwang J. K. Evaluation of catalytic free energies in genetically modified proteins. J Mol Biol. 1988 May 5;201(1):139–159. doi: 10.1016/0022-2836(88)90445-7. [DOI] [PubMed] [Google Scholar]
