Abstract
Protein function is often controlled by ligand-induced conformational transitions. Yet, in spite of the increasing number of three-dimensional crystal structures of proteins in different conformations, not much is known about the driving forces of these transitions. As an initial step toward exploring the conformational and energetic landscape of protein kinases by computational methods, intramolecular energies and hydration free energies were calculated for different conformations of the catalytic domain of cAMP-dependent protein kinase (cAPK) with a continuum (Poisson) model for the electrostatics. Three protein kinase crystal structures for ternary complexes of cAPK with the peptide inhibitor PKI(5-24) and ATP or AMP-PNP were modeled into idealized intermediate and open conformations. Concordant with experimental observation, we find that the binding of PKI(5-24) is more effective in stabilizing the closed and intermediate forms of cAPK than ATP. PKI(5-24) seems to drive the final closure of the active site cleft from intermediate to closed state because ATP does not distinguish between these two states. Binding of PKI(5-24) and ATP is energetically additive.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bossemeyer D., Engh R. A., Kinzel V., Ponstingl H., Huber R. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). EMBO J. 1993 Mar;12(3):849–859. doi: 10.1002/j.1460-2075.1993.tb05725.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox S., Radzio-Andzelm E., Taylor S. S. Domain movements in protein kinases. Curr Opin Struct Biol. 1994 Dec;4(6):893–901. doi: 10.1016/0959-440x(94)90272-0. [DOI] [PubMed] [Google Scholar]
- Elamrani S., Berry M. B., Phillips G. N., Jr, McCammon J. A. Study of global motions in proteins by weighted masses molecular dynamics: adenylate kinase as a test case. Proteins. 1996 May;25(1):79–88. doi: 10.1002/(SICI)1097-0134(199605)25:1<79::AID-PROT6>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
- García A. E., Harman J. G. Simulations of CRP:(cAMP)2 in noncrystalline environments show a subunit transition from the open to the closed conformation. Protein Sci. 1996 Jan;5(1):62–71. doi: 10.1002/pro.5560050108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilson M. K., Given J. A., Bush B. L., McCammon J. A. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J. 1997 Mar;72(3):1047–1069. doi: 10.1016/S0006-3495(97)78756-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant B. D., Tsigelny I., Adams J. A., Taylor S. S. Examination of an active-site electrostatic node in the cAMP-dependent protein kinase catalytic subunit. Protein Sci. 1996 Jul;5(7):1316–1324. doi: 10.1002/pro.5560050710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grieco D., Porcellini A., Avvedimento E. V., Gottesman M. E. Requirement for cAMP-PKA pathway activation by M phase-promoting factor in the transition from mitosis to interphase. Science. 1996 Mar 22;271(5256):1718–1723. doi: 10.1126/science.271.5256.1718. [DOI] [PubMed] [Google Scholar]
- Haran G., Haas E., Szpikowska B. K., Mas M. T. Domain motions in phosphoglycerate kinase: determination of interdomain distance distributions by site-specific labeling and time-resolved fluorescence energy transfer. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11764–11768. doi: 10.1073/pnas.89.24.11764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hempel J. C., Fine R. M., Hassan M., Ghoul W., Guaragna A., Koerber S. C., Li Z., Hagler A. T. Conformational analysis of endothelin-1: effects of solvation free energy. Biopolymers. 1995 Sep;36(3):283–301. doi: 10.1002/bip.360360304. [DOI] [PubMed] [Google Scholar]
- Huber R., Bennett W. S., Jr Functional significance of flexibility in proteins. Biopolymers. 1983 Jan;22(1):261–279. doi: 10.1002/bip.360220136. [DOI] [PubMed] [Google Scholar]
- Knighton D. R., Zheng J. H., Ten Eyck L. F., Ashford V. A., Xuong N. H., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):407–414. doi: 10.1126/science.1862342. [DOI] [PubMed] [Google Scholar]
- Lesk A. M., Chothia C. Mechanisms of domain closure in proteins. J Mol Biol. 1984 Mar 25;174(1):175–191. doi: 10.1016/0022-2836(84)90371-1. [DOI] [PubMed] [Google Scholar]
- Lew J., Coruh N., Tsigelny I., Garrod S., Taylor S. S. Synergistic binding of nucleotides and inhibitors to cAMP-dependent protein kinase examined by acrylodan fluorescence spectroscopy. J Biol Chem. 1997 Jan 17;272(3):1507–1513. doi: 10.1074/jbc.272.3.1507. [DOI] [PubMed] [Google Scholar]
- Mchaourab H. S., Oh K. J., Fang C. J., Hubbell W. L. Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. Biochemistry. 1997 Jan 14;36(2):307–316. doi: 10.1021/bi962114m. [DOI] [PubMed] [Google Scholar]
- Montminy M. R., Gonzalez G. A., Yamamoto K. K. Regulation of cAMP-inducible genes by CREB. Trends Neurosci. 1990 May;13(5):184–188. doi: 10.1016/0166-2236(90)90045-c. [DOI] [PubMed] [Google Scholar]
- Mouawad L., Perahia D. Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structures. J Mol Biol. 1996 May 3;258(2):393–410. doi: 10.1006/jmbi.1996.0257. [DOI] [PubMed] [Google Scholar]
- Narayana N., Cox S., Nguyen-huu X., Ten Eyck L. F., Taylor S. S. A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility. Structure. 1997 Jul 15;5(7):921–935. doi: 10.1016/s0969-2126(97)00246-3. [DOI] [PubMed] [Google Scholar]
- Narayana N., Cox S., Shaltiel S., Taylor S. S., Xuong N. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine. Biochemistry. 1997 Apr 15;36(15):4438–4448. doi: 10.1021/bi961947+. [DOI] [PubMed] [Google Scholar]
- Olah G. A., Mitchell R. D., Sosnick T. R., Walsh D. A., Trewhella J. Solution structure of the cAMP-dependent protein kinase catalytic subunit and its contraction upon binding the protein kinase inhibitor peptide. Biochemistry. 1993 Apr 13;32(14):3649–3657. doi: 10.1021/bi00065a018. [DOI] [PubMed] [Google Scholar]
- Perahia D., Mouawad L. Computation of low-frequency normal modes in macromolecules: improvements to the method of diagonalization in a mixed basis and application to hemoglobin. Comput Chem. 1995 Sep;19(3):241–246. doi: 10.1016/0097-8485(95)00011-g. [DOI] [PubMed] [Google Scholar]
- Pickover C. A., McKay D. B., Engelman D. M., Steitz T. A. Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase. J Biol Chem. 1979 Nov 25;254(22):11323–11329. [PubMed] [Google Scholar]
- Russell P. J., Jr, Chinn E., Williams A., David-Dimarino C., Taulane J. P., Lopez R. Evidence for conformers of rabbit muscle adenylate kinase. J Biol Chem. 1990 Jul 15;265(20):11804–11809. [PubMed] [Google Scholar]
- Schlitter J., Engels M., Krüger P. Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J Mol Graph. 1994 Jun;12(2):84–89. doi: 10.1016/0263-7855(94)80072-3. [DOI] [PubMed] [Google Scholar]
- Smith K. C., Honig B. Evaluation of the conformational free energies of loops in proteins. Proteins. 1994 Feb;18(2):119–132. doi: 10.1002/prot.340180205. [DOI] [PubMed] [Google Scholar]
- Stoddard B. L. Intermediate trapping and laue X-ray diffraction: potential for enzyme mechanism, dynamics, and inhibitor screening. Pharmacol Ther. 1996;70(3):215–256. doi: 10.1016/0163-7258(96)00058-7. [DOI] [PubMed] [Google Scholar]
- Taylor S. S., Radzio-Andzelm E. Three protein kinase structures define a common motif. Structure. 1994 May 15;2(5):345–355. doi: 10.1016/s0969-2126(00)00036-8. [DOI] [PubMed] [Google Scholar]
- Tomasselli A. G., Noda L. H. Baker's yeast adenylate kinase. Evidence of conformational change from intrinsic fluorescence and difference spectra. Determination of the structure of enzyme-bound metal-nucleotide by use of phosphorothioate analogues of ATP. Eur J Biochem. 1983 Apr 15;132(1):109–115. doi: 10.1111/j.1432-1033.1983.tb07333.x. [DOI] [PubMed] [Google Scholar]
- Tsigelny I., Grant B. D., Taylor S. S., Ten Eyck L. F. Catalytic subunit of cAMP-dependent protein kinase: electrostatic features and peptide recognition. Biopolymers. 1996 Sep;39(3):353–365. doi: 10.1002/(SICI)1097-0282(199609)39:3%3C353::AID-BIP7%3E3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- Yang A. S., Hitz B., Honig B. Free energy determinants of secondary structure formation: III. beta-turns and their role in protein folding. J Mol Biol. 1996 Jun 21;259(4):873–882. doi: 10.1006/jmbi.1996.0364. [DOI] [PubMed] [Google Scholar]
- Yang A. S., Honig B. Free energy determinants of secondary structure formation: I. alpha-Helices. J Mol Biol. 1995 Sep 22;252(3):351–365. doi: 10.1006/jmbi.1995.0502. [DOI] [PubMed] [Google Scholar]
- Zheng J., Knighton D. R., Xuong N. H., Taylor S. S., Sowadski J. M., Ten Eyck L. F. Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Sci. 1993 Oct;2(10):1559–1573. doi: 10.1002/pro.5560021003. [DOI] [PMC free article] [PubMed] [Google Scholar]