Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Nov;6(11):2418–2425. doi: 10.1002/pro.5560061115

Alteration of T4 lysozyme structure by second-site reversion of deleterious mutations.

A R Poteete 1, D Rennell 1, S E Bouvier 1, L W Hardy 1
PMCID: PMC2143591  PMID: 9385644

Abstract

Mutations that suppress the defects introduced into T4 lysozyme by single amino acid substitutions were isolated and characterized. Among 53 primary sites surveyed, 8 yielded second-site revertants; a total of 18 different mutants were obtained. Most of the restorative mutations exerted global effects, generally increasing lysozyme function in a number of primary mutant contexts. Six of them were more specific, suppressing only certain specific deleterious primary substitutions, or diminishing the function of lysozymes bearing otherwise nondeleterious primary substitutions. Some variants of proteins bearing primary substitutions at the positions of Asp 20 and Ala 98 are inferred to have significantly altered structures.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T., Sun D. P., Nye J. A., Muchmore D. C., Matthews B. W. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. Biochemistry. 1987 Jun 30;26(13):3754–3758. doi: 10.1021/bi00387a002. [DOI] [PubMed] [Google Scholar]
  2. Anand N. N., Stephen E. R., Narang S. A. Mutation of active site residues in synthetic T4-lysozyme gene and their effect on lytic activity. Biochem Biophys Res Commun. 1988 Jun 16;153(2):862–868. doi: 10.1016/s0006-291x(88)81175-6. [DOI] [PubMed] [Google Scholar]
  3. Anderson W. F., Grütter M. G., Remington S. J., Weaver L. H., Matthews B. W. Crystallographic determination of the mode of binding of oligosaccharides to T4 bacteriophage lysozyme: implications for the mechanism of catalysis. J Mol Biol. 1981 Apr 25;147(4):523–543. doi: 10.1016/0022-2836(81)90398-3. [DOI] [PubMed] [Google Scholar]
  4. Baldwin E., Xu J., Hajiseyedjavadi O., Baase W. A., Matthews B. W. Thermodynamic and structural compensation in "size-switch" core repacking variants of bacteriophage T4 lysozyme. J Mol Biol. 1996 Jun 14;259(3):542–559. doi: 10.1006/jmbi.1996.0338. [DOI] [PubMed] [Google Scholar]
  5. Blaber M., Zhang X. J., Lindstrom J. D., Pepiot S. D., Baase W. A., Matthews B. W. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. J Mol Biol. 1994 Jan 14;235(2):600–624. doi: 10.1006/jmbi.1994.1016. [DOI] [PubMed] [Google Scholar]
  6. Bouvier S. E., Poteete A. R. Second-site reversion of a structural defect in bacteriophage T4 lysozyme. FASEB J. 1996 Jan;10(1):159–163. doi: 10.1096/fasebj.10.1.8566537. [DOI] [PubMed] [Google Scholar]
  7. Dao-pin S., Söderlind E., Baase W. A., Wozniak J. A., Sauer U., Matthews B. W. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability. J Mol Biol. 1991 Oct 5;221(3):873–887. doi: 10.1016/0022-2836(91)80181-s. [DOI] [PubMed] [Google Scholar]
  8. Daopin S., Alber T., Baase W. A., Wozniak J. A., Matthews B. W. Structural and thermodynamic analysis of the packing of two alpha-helices in bacteriophage T4 lysozyme. J Mol Biol. 1991 Sep 20;221(2):647–667. doi: 10.1016/0022-2836(91)80079-a. [DOI] [PubMed] [Google Scholar]
  9. Eriksson A. E., Baase W. A., Matthews B. W. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. J Mol Biol. 1993 Feb 5;229(3):747–769. doi: 10.1006/jmbi.1993.1077. [DOI] [PubMed] [Google Scholar]
  10. Faber H. R., Matthews B. W. A mutant T4 lysozyme displays five different crystal conformations. Nature. 1990 Nov 15;348(6298):263–266. doi: 10.1038/348263a0. [DOI] [PubMed] [Google Scholar]
  11. Gray T. M., Matthews B. W. Structural analysis of the temperature-sensitive mutant of bacteriophage T4 lysozyme, glycine 156----aspartic acid. J Biol Chem. 1987 Dec 15;262(35):16858–16864. doi: 10.2210/pdb1l16/pdb. [DOI] [PubMed] [Google Scholar]
  12. Hardy L. W., Poteete A. R. Reexamination of the role of Asp20 in catalysis by bacteriophage T4 lysozyme. Biochemistry. 1991 Oct 1;30(39):9457–9463. doi: 10.1021/bi00103a010. [DOI] [PubMed] [Google Scholar]
  13. Karpusas M., Baase W. A., Matsumura M., Matthews B. W. Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8237–8241. doi: 10.1073/pnas.86.21.8237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kleina L. G., Masson J. M., Normanly J., Abelson J., Miller J. H. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J Mol Biol. 1990 Jun 20;213(4):705–717. doi: 10.1016/S0022-2836(05)80257-8. [DOI] [PubMed] [Google Scholar]
  15. Kuroki R., Weaver L. H., Matthews B. W. A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. Science. 1993 Dec 24;262(5142):2030–2033. doi: 10.1126/science.8266098. [DOI] [PubMed] [Google Scholar]
  16. Kuroki R., Weaver L. H., Matthews B. W. Structure-based design of a lysozyme with altered catalytic activity. Nat Struct Biol. 1995 Nov;2(11):1007–1011. doi: 10.1038/nsb1195-1007. [DOI] [PubMed] [Google Scholar]
  17. Lanzer M., Bujard H. Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8973–8977. doi: 10.1073/pnas.85.23.8973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsumura M., Matthews B. W. Control of enzyme activity by an engineered disulfide bond. Science. 1989 Feb 10;243(4892):792–794. doi: 10.1126/science.2916125. [DOI] [PubMed] [Google Scholar]
  19. Matthews B. W., Remington S. J., Grütter M. G., Anderson W. F. Relation between hen egg white lysozyme and bacteriophage T4 lysozyme: evolutionary implications. J Mol Biol. 1981 Apr 25;147(4):545–558. doi: 10.1016/0022-2836(81)90399-5. [DOI] [PubMed] [Google Scholar]
  20. Matthews B. W. Studies on protein stability with T4 lysozyme. Adv Protein Chem. 1995;46:249–278. doi: 10.1016/s0065-3233(08)60337-x. [DOI] [PubMed] [Google Scholar]
  21. Pjura P., Matsumura M., Baase W. A., Matthews B. W. Development of an in vivo method to identify mutants of phage T4 lysozyme of enhanced thermostability. Protein Sci. 1993 Dec;2(12):2217–2225. doi: 10.1002/pro.5560021221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pjura P., Matthews B. W. Structures of randomly generated mutants of T4 lysozyme show that protein stability can be enhanced by relaxation of strain and by improved hydrogen bonding via bound solvent. Protein Sci. 1993 Dec;2(12):2226–2232. doi: 10.1002/pro.5560021222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Poteete A. R., Hardy L. W. Genetic analysis of bacteriophage T4 lysozyme structure and function. J Bacteriol. 1994 Nov;176(22):6783–6788. doi: 10.1128/jb.176.22.6783-6788.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Poteete A. R., Sun D. P., Nicholson H., Matthews B. W. Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft. Biochemistry. 1991 Feb 5;30(5):1425–1432. doi: 10.1021/bi00219a037. [DOI] [PubMed] [Google Scholar]
  25. Rennell D., Bouvier S. E., Hardy L. W., Poteete A. R. Systematic mutation of bacteriophage T4 lysozyme. J Mol Biol. 1991 Nov 5;222(1):67–88. doi: 10.1016/0022-2836(91)90738-r. [DOI] [PubMed] [Google Scholar]
  26. Rennell D., Poteete A. R. Genetic analysis of bacteriophage P22 lysozyme structure. Genetics. 1989 Nov;123(3):431–440. doi: 10.1093/genetics/123.3.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rose G. D., Gierasch L. M., Smith J. A. Turns in peptides and proteins. Adv Protein Chem. 1985;37:1–109. doi: 10.1016/s0065-3233(08)60063-7. [DOI] [PubMed] [Google Scholar]
  28. Shortle D., Lin B. Genetic analysis of staphylococcal nuclease: identification of three intragenic "global" suppressors of nuclease-minus mutations. Genetics. 1985 Aug;110(4):539–555. doi: 10.1093/genetics/110.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weaver L. H., Matthews B. W. Structure of bacteriophage T4 lysozyme refined at 1.7 A resolution. J Mol Biol. 1987 Jan 5;193(1):189–199. doi: 10.1016/0022-2836(87)90636-x. [DOI] [PubMed] [Google Scholar]
  30. Youderian P., Bouvier S., Susskind M. M. Sequence determinants of promoter activity. Cell. 1982 Oct;30(3):843–853. doi: 10.1016/0092-8674(82)90289-6. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES