Abstract
In the bacterium Bacillus subtilis, the DNA-binding regulatory protein, BmrR, activates transcription from the multidrug transporter gene, bmr, after binding either rhodamine or tetraphenylphosphonium. These two compounds, which have no structural similarity, are also substrates for the bacterial multidrug transporter. BmrR belongs to the MerR family of transcription activators but differs from the other family members in its ability to bind unrelated small molecule activators. As an initial step in the elucidation of the mechanism by which BmrR recognizes rhodamine and tetraphenylphosphonium and activates transcription, we have crystallized the 144-amino acid-residue carboxy terminal dimerization/ligand-binding domain of the BmrR, named the BRC (BmrR C-terminus). Tetragonal crystals of ligand-free BRC take the space group P4(1)2(1)2, or its enantiomorph P4(3)2(1)2, with unit cell dimensions a = b = 76.3 A, c = 96.0 A, alpha = beta = gamma = 90 degrees. Diffraction is observed to at least 2.7 A resolution at room temperature. In addition, we determined the secondary structure content of ligand-free and rhodamine-bound BRC by circular dichroism. In the ligand-free form, BRC has considerable beta-sheet content (41%) and little alpha-helix structure (13%). After BRC binds rhodamine, its beta-sheet content increases to 47% while the alpha-helix structure decreases to 11%. The structure of BRC will provide insight not only into its multidrug recognition mechanism but could as well aid in the elucidation of the recognition and efflux mechanisms of Bmr and other bacterial multidrug transporters.
Full Text
The Full Text of this article is available as a PDF (428.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen T. E., Ullman B. Cloning and expression of the hypoxanthine-guanine phosphoribosyltransferase gene from Trypanosoma brucei. Nucleic Acids Res. 1993 Nov 25;21(23):5431–5438. doi: 10.1093/nar/21.23.5431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Compton L. A., Mathews C. K., Johnson W. C., Jr The conformation of T4 bacteriophage dihydrofolate reductase from circular dichroism. J Biol Chem. 1987 Sep 25;262(27):13039–13043. [PubMed] [Google Scholar]
- Ferré-D'Amaré A. R., Burley S. K. Use of dynamic light scattering to assess crystallizability of macromolecules and macromolecular assemblies. Structure. 1994 May 15;2(5):357–359. doi: 10.1016/s0969-2126(00)00037-x. [DOI] [PubMed] [Google Scholar]
- Gaudu P., Weiss B. SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10094–10098. doi: 10.1073/pnas.93.19.10094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
- Hidalgo E., Ding H., Demple B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci. 1997 Jun;22(6):207–210. doi: 10.1016/s0968-0004(97)01068-2. [DOI] [PubMed] [Google Scholar]
- Holmes D. J., Caso J. L., Thompson C. J. Autogenous transcriptional activation of a thiostrepton-induced gene in Streptomyces lividans. EMBO J. 1993 Aug;12(8):3183–3191. doi: 10.1002/j.1460-2075.1993.tb05987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LeMaster D. M., Richards F. M. 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry. 1985 Dec 3;24(25):7263–7268. doi: 10.1021/bi00346a036. [DOI] [PubMed] [Google Scholar]
- Lewis K. Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci. 1994 Mar;19(3):119–123. doi: 10.1016/0968-0004(94)90204-6. [DOI] [PubMed] [Google Scholar]
- Markham P. N., LoGuidice J., Neyfakh A. A. Broad ligand specificity of the transcriptional regulator of the Bacillus subtilis multidrug transporter Bmr. Biochem Biophys Res Commun. 1997 Oct 9;239(1):269–272. doi: 10.1006/bbrc.1997.7467. [DOI] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- Neyfakh A. A., Bidnenko V. E., Chen L. B. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4781–4785. doi: 10.1073/pnas.88.11.4781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulsen I. T., Brown M. H., Skurray R. A. Proton-dependent multidrug efflux systems. Microbiol Rev. 1996 Dec;60(4):575–608. doi: 10.1128/mr.60.4.575-608.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers A. O. Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol. 1992 May;174(10):3097–3101. doi: 10.1128/jb.174.10.3097-3101.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trakhanov S., Quiocho F. A. Influence of divalent cations in protein crystallization. Protein Sci. 1995 Sep;4(9):1914–1919. doi: 10.1002/pro.5560040925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Utschig L. M., Bryson J. W., O'Halloran T. V. Mercury-199 NMR of the metal receptor site in MerR and its protein-DNA complex. Science. 1995 Apr 21;268(5209):380–385. doi: 10.1126/science.7716541. [DOI] [PubMed] [Google Scholar]