Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Dec;6(12):2659–2662. doi: 10.1002/pro.5560061222

Crystallization of acetate kinase from Methanosarcina thermophila and prediction of its fold.

K A Buss 1, C Ingram-Smith 1, J G Ferry 1, D A Sanders 1, M S Hasson 1
PMCID: PMC2143604  PMID: 9416619

Abstract

The unique biochemical properties of acetate kinase present a classic conundrum in the study of the mechanism of enzyme-catalyzed phosphoryl transfer. Large, single crystals of acetate kinase from Methanosarcina thermophila were grown from a solution of ammonium sulfate in the presence of ATP. The crystals diffract to beyond 1.7 A resolution. Analysis of X-ray data from the crystals is consistent with a space group of C2 and unit cell dimensions a = 181 A, b = 67 A, c = 83 A, beta = 103 degrees. Diffraction data have been collected from the crystals at 110 and 277 K. Data collected at 277 K extend to lower resolution, but are more reproducible. The orientation of a noncrystallographic two-fold axis of symmetry has been determined. Based on an analysis of the predicted amino acid sequences of acetate kinase from several organisms, we hypothesize that acetate kinase is a member of the sugar kinase/actin/hsp70 structural family.

Full Text

The Full Text of this article is available as a PDF (372.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceti D. J., Ferry J. G. Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis. J Biol Chem. 1988 Oct 25;263(30):15444–15448. [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Anthony R. S., Spector L. B. A phosphoenzyme intermediary in acetate kinase action. J Biol Chem. 1970 Dec 25;245(24):6739–6741. [PubMed] [Google Scholar]
  4. Anthony R. S., Spector L. B. Phosphorylated acetate kinase. Its isolation and reactivity. J Biol Chem. 1972 Apr 10;247(7):2120–2125. [PubMed] [Google Scholar]
  5. Blättler W. A., Knowles J. R. Stereochemical course of phosphokinases. The use of adenosine [gamma-(S)-16O,17O,18O]triphosphate and the mechanistic consequences for the reactions catalyzed by glycerol kinase, hexokinase, pyruvate kinase, and acetate kinase. Biochemistry. 1979 Sep 4;18(18):3927–3933. doi: 10.1021/bi00585a013. [DOI] [PubMed] [Google Scholar]
  6. Das S., Yu L., Gaitatzes C., Rogers R., Freeman J., Bienkowska J., Adams R. M., Smith T. F., Lindelien J. Biology's new Rosetta stone. Nature. 1997 Jan 2;385(6611):29–30. doi: 10.1038/385029a0. [DOI] [PubMed] [Google Scholar]
  7. Ferry J. G. Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. Biofactors. 1997;6(1):25–35. doi: 10.1002/biof.5520060104. [DOI] [PubMed] [Google Scholar]
  8. Flaherty K. M., McKay D. B., Kabsch W., Holmes K. C. Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):5041–5045. doi: 10.1073/pnas.88.11.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox D. K., Meadow N. D., Roseman S. Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J Biol Chem. 1986 Oct 15;261(29):13498–13503. [PubMed] [Google Scholar]
  10. Fox D. K., Roseman S. Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli. J Biol Chem. 1986 Oct 15;261(29):13487–13497. [PubMed] [Google Scholar]
  11. Holmes K. C., Sander C., Valencia A. A new ATP-binding fold in actin, hexokinase and Hsc70. Trends Cell Biol. 1993 Feb;3(2):53–59. doi: 10.1016/0962-8924(93)90161-s. [DOI] [PubMed] [Google Scholar]
  12. Hurley J. H. The sugar kinase/heat shock protein 70/actin superfamily: implications of conserved structure for mechanism. Annu Rev Biophys Biomol Struct. 1996;25:137–162. doi: 10.1146/annurev.bb.25.060196.001033. [DOI] [PubMed] [Google Scholar]
  13. Knowles J. R. Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem. 1980;49:877–919. doi: 10.1146/annurev.bi.49.070180.004305. [DOI] [PubMed] [Google Scholar]
  14. Latimer M. T., Ferry J. G. Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila. J Bacteriol. 1993 Nov;175(21):6822–6829. doi: 10.1128/jb.175.21.6822-6829.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  16. Todhunter J. A., Purich D. L. Evidence for the formation of a gamma-phosphorylated glutamyl residue in the Escherichia coli acetate kinase reaction. Biochem Biophys Res Commun. 1974 Sep 9;60(1):273–280. doi: 10.1016/0006-291x(74)90201-0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES