Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Dec;6(12):2636–2638. doi: 10.1002/pro.5560061217

Crystallization and preliminary X-ray diffraction analysis of arginyl-tRNA synthetase from Escherichia coli.

M Zhou 1, E D Wang 1, R L Campbell 1, Y L Wang 1, S X Lin 1
PMCID: PMC2143609  PMID: 9416614

Abstract

Arginyl-tRNA Synthetase, a class I aminoacyl tRNA synthetase playing a crucial role in protein biosynthesis, has been crystallized for the first time. Polyethylene glycol (PEG) was used as a precipitant, and the crystallization proceeded at pH 6.5. These single crystals diffracted to 2.8 A with a rotating anode X-ray source and R-axis IIc image plate detector. They have an orthorhombic space group P2(1)2(1)2 with unit cell parameters of a = 251.51 A, b = 53.12 A, and c = 52.35 A. A complete native data set has been collected at 3.1 A resolution for these crystals.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Char S., Gopinathan K. P. Arginyl-tRNA synthetase from Mycobacterium smegmatis SN2: purification and kinetic mechanism. J Biochem. 1986 Aug;100(2):349–357. doi: 10.1093/oxfordjournals.jbchem.a121721. [DOI] [PubMed] [Google Scholar]
  2. Diederichs K., Karplus P. A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol. 1997 Apr;4(4):269–275. doi: 10.1038/nsb0497-269. [DOI] [PubMed] [Google Scholar]
  3. Eriani G., Dirheimer G., Gangloff J. Isolation and characterization of the gene coding for Escherichia coli arginyl-tRNA synthetase. Nucleic Acids Res. 1989 Jul 25;17(14):5725–5736. doi: 10.1093/nar/17.14.5725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gangloff J., Schutz A., Dirheimer G. Arginyl-tRNA synthetase from baker's yeast. Purification and some properties. Eur J Biochem. 1976 May 17;65(1):177–182. doi: 10.1111/j.1432-1033.1976.tb10403.x. [DOI] [PubMed] [Google Scholar]
  5. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  6. Nureki O., Vassylyev D. G., Katayanagi K., Shimizu T., Sekine S., Kigawa T., Miyazawa T., Yokoyama S., Morikawa K. Architectures of class-defining and specific domains of glutamyl-tRNA synthetase. Science. 1995 Mar 31;267(5206):1958–1965. doi: 10.1126/science.7701318. [DOI] [PubMed] [Google Scholar]
  7. Parfait R., Grosjean H. Arginyl-transfer ribonucleic-acid synthetase from Bacillus stearothermophilus. Purification, properties and mechanism of action. Eur J Biochem. 1972 Oct;30(2):242–249. doi: 10.1111/j.1432-1033.1972.tb02092.x. [DOI] [PubMed] [Google Scholar]
  8. RAVEL J. M., WANG S. F., HEINEMEYER C., SHIVE W. GLUTAMYL AND GLUTAMINYL RIBONUCLEIC ACID SYNTHETASES OF ESCHERICHIA COLI W. SEPARATION, PROPERTIES, AND STIMULATION OF ADENOSINE TRIPHOSPHATE-PYROPHOSPHATE EXCHANGE BY ACCEPTOR RIBONUCLEIC ACID. J Biol Chem. 1965 Jan;240:432–438. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES