Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Dec;6(12):2489–2493. doi: 10.1002/pro.5560061201

Knowledge-based model of a glucosyltransferase from the oral bacterial group of mutans streptococci.

K S Devulapalle 1, S D Goodman 1, Q Gao 1, A Hemsley 1, G Mooser 1
PMCID: PMC2143619  PMID: 9416598

Abstract

Mutans streptococci glucosyltransferases catalyze glucosyl transfer from sucrose to a glucan chain. We previously identified an aspartyl residue that participates in stabilizing the glucosyl transition state. The sequence surrounding the aspartate was found to have substantial sequence similarity with members of alpha-amylase family. Because little is known of the protein structure beyond the amino acid sequence, we used a knowledge-based interactive algorithm, MACAW, which provided significant level of homology with alpha-amylases and glucosyltransferase from Streptococcus downei gtfI (GTF). The significance of GTF similarity is underlined by GTF/alpha-amylase residues conserved in all but one alpha-amylase invariant residues. Site-directed mutagenesis of the three GTF catalytic residues are homologous with the alpha-amylase catalytic triad. The glucosyltransferases are members of the 4/7-superfamily that have a (beta/alpha)8-barrel structure and belong to family 13 of the glycohydralases.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brayer G. D., Luo Y., Withers S. G. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995 Sep;4(9):1730–1742. doi: 10.1002/pro.5560040908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buisson G., Duée E., Haser R., Payan F. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 1987 Dec 20;6(13):3909–3916. doi: 10.1002/j.1460-2075.1987.tb02731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Farber G. K., Petsko G. A. The evolution of alpha/beta barrel enzymes. Trends Biochem Sci. 1990 Jun;15(6):228–234. doi: 10.1016/0968-0004(90)90035-a. [DOI] [PubMed] [Google Scholar]
  4. Ferretti J. J., Gilpin M. L., Russell R. R. Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J Bacteriol. 1987 Sep;169(9):4271–4278. doi: 10.1128/jb.169.9.4271-4278.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hamada S., Slade H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980 Jun;44(2):331–384. doi: 10.1128/mr.44.2.331-384.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holm L., Koivula A. K., Lehtovaara P. M., Hemminki A., Knowles J. K. Random mutagenesis used to probe the structure and function of Bacillus stearothermophilus alpha-amylase. Protein Eng. 1990 Jan;3(3):181–191. doi: 10.1093/protein/3.3.181. [DOI] [PubMed] [Google Scholar]
  8. Janecek S. Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology? Protein Sci. 1996 Jun;5(6):1136–1143. doi: 10.1002/pro.5560050615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jenkins J., Lo Leggio L., Harris G., Pickersgill R. Beta-glucosidase, beta-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold beta/alpha architecture and with two conserved glutamates near the carboxy-terminal ends of beta-strands four and seven. FEBS Lett. 1995 Apr 10;362(3):281–285. doi: 10.1016/0014-5793(95)00252-5. [DOI] [PubMed] [Google Scholar]
  10. Kadziola A., Abe J., Svensson B., Haser R. Crystal and molecular structure of barley alpha-amylase. J Mol Biol. 1994 May 27;239(1):104–121. doi: 10.1006/jmbi.1994.1354. [DOI] [PubMed] [Google Scholar]
  11. Kizaki H., Hata Y., Watanabe K., Katsube Y., Suzuki Y. Polypeptide folding of Bacillus cereus ATCC7064 oligo-1,6-glucosidase revealed by 3.0 A resolution X-ray analysis. J Biochem. 1993 Jun;113(6):646–649. doi: 10.1093/oxfordjournals.jbchem.a124097. [DOI] [PubMed] [Google Scholar]
  12. Klein C., Hollender J., Bender H., Schulz G. E. Catalytic center of cyclodextrin glycosyltransferase derived from X-ray structure analysis combined with site-directed mutagenesis. Biochemistry. 1992 Sep 22;31(37):8740–8746. doi: 10.1021/bi00152a009. [DOI] [PubMed] [Google Scholar]
  13. Klein C., Schulz G. E. Structure of cyclodextrin glycosyltransferase refined at 2.0 A resolution. J Mol Biol. 1991 Feb 20;217(4):737–750. doi: 10.1016/0022-2836(91)90530-j. [DOI] [PubMed] [Google Scholar]
  14. Kuriki T., Takata H., Okada S., Imanaka T. Analysis of the active center of Bacillus stearothermophilus neopullulanase. J Bacteriol. 1991 Oct;173(19):6147–6152. doi: 10.1128/jb.173.19.6147-6152.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Larson S. B., Greenwood A., Cascio D., Day J., McPherson A. Refined molecular structure of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol. 1994 Feb 4;235(5):1560–1584. doi: 10.1006/jmbi.1994.1107. [DOI] [PubMed] [Google Scholar]
  16. Lawson C. L., van Montfort R., Strokopytov B., Rozeboom H. J., Kalk K. H., de Vries G. E., Penninga D., Dijkhuizen L., Dijkstra B. W. Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol. 1994 Feb 18;236(2):590–600. doi: 10.1006/jmbi.1994.1168. [DOI] [PubMed] [Google Scholar]
  17. Loesche W. J. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec;50(4):353–380. doi: 10.1128/mr.50.4.353-380.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacGregor E. A., Jespersen H. M., Svensson B. A circularly permuted alpha-amylase-type alpha/beta-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett. 1996 Jan 15;378(3):263–266. doi: 10.1016/0014-5793(95)01428-4. [DOI] [PubMed] [Google Scholar]
  19. Mathupala S. P., Lowe S. E., Podkovyrov S. M., Zeikus J. G. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis. J Biol Chem. 1993 Aug 5;268(22):16332–16344. [PubMed] [Google Scholar]
  20. Matsuura Y., Kusunoki M., Harada W., Kakudo M. Structure and possible catalytic residues of Taka-amylase A. J Biochem. 1984 Mar;95(3):697–702. doi: 10.1093/oxfordjournals.jbchem.a134659. [DOI] [PubMed] [Google Scholar]
  21. Mooser G., Hefta S. A., Paxton R. J., Shively J. E., Lee T. D. Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus alpha-glucosyltransferases. J Biol Chem. 1991 May 15;266(14):8916–8922. [PubMed] [Google Scholar]
  22. Mooser G., Iwaoka K. R. Sucrose 6-alpha-D-glucosyltransferase from Streptococcus sobrinus: characterization of a glucosyl-enzyme complex. Biochemistry. 1989 Jan 24;28(2):443–449. doi: 10.1021/bi00428a006. [DOI] [PubMed] [Google Scholar]
  23. Mooser G., Shur D., Lyou M., Watanabe C. Kinetic studies on dextransucrase from the cariogenic oral bacterium Streptococcus mutans. J Biol Chem. 1985 Jun 10;260(11):6907–6915. [PubMed] [Google Scholar]
  24. Nagashima T., Tada S., Kitamoto K., Gomi K., Kumagai C., Toda H. Site-directed mutagenesis of catalytic active-site residues of Taka-amylase A. Biosci Biotechnol Biochem. 1992 Feb;56(2):207–210. doi: 10.1271/bbb.56.207. [DOI] [PubMed] [Google Scholar]
  25. Podkovyrov S. M., Burdette D., Zeikus J. G. Analysis of the catalytic center of cyclomaltodextrinase from Thermoanaerobacter ethanolicus 39E. FEBS Lett. 1993 Feb 15;317(3):259–262. doi: 10.1016/0014-5793(93)81288-b. [DOI] [PubMed] [Google Scholar]
  26. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  27. Svensson B. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol. 1994 May;25(2):141–157. doi: 10.1007/BF00023233. [DOI] [PubMed] [Google Scholar]
  28. Søgaard M., Kadziola A., Haser R., Svensson B. Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1. J Biol Chem. 1993 Oct 25;268(30):22480–22484. [PubMed] [Google Scholar]
  29. Takase K., Matsumoto T., Mizuno H., Yamane K. Site-directed mutagenesis of active site residues in Bacillus subtilis alpha-amylase. Biochim Biophys Acta. 1992 Apr 17;1120(3):281–288. doi: 10.1016/0167-4838(92)90249-d. [DOI] [PubMed] [Google Scholar]
  30. Vihinen M., Ollikka P., Niskanen J., Meyer P., Suominen I., Karp M., Holm L., Knowles J., Mäntsälä P. Site-directed mutagenesis of a thermostable alpha-amylase from Bacillus stearothermophilus: putative role of three conserved residues. J Biochem. 1990 Feb;107(2):267–272. doi: 10.1093/oxfordjournals.jbchem.a123037. [DOI] [PubMed] [Google Scholar]
  31. Wiesmann C., Beste G., Hengstenberg W., Schulz G. E. The three-dimensional structure of 6-phospho-beta-galactosidase from Lactococcus lactis. Structure. 1995 Sep 15;3(9):961–968. doi: 10.1016/s0969-2126(01)00230-1. [DOI] [PubMed] [Google Scholar]
  32. Wong C., Hefta S. A., Paxton R. J., Shively J. E., Mooser G. Size and subdomain architecture of the glucan-binding domain of sucrose:3-alpha-D-glucosyltransferase from Streptococcus sobrinus. Infect Immun. 1990 Jul;58(7):2165–2170. doi: 10.1128/iai.58.7.2165-2170.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES