Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Dec;6(12):2548–2560. doi: 10.1002/pro.5560061207

Cross-strand side-chain interactions versus turn conformation in beta-hairpins.

E de Alba 1, M Rico 1, M A Jiménez 1
PMCID: PMC2143622  PMID: 9416604

Abstract

A series of designed peptides has been analyzed by 1H-NMR spectroscopy in order to investigate the influence of cross-strand side-chain interactions in beta-hairpin formation. The peptides differ in the N-terminal residues of a previously designed linear decapeptide that folds in aqueous solution into two interconverting beta-hairpin conformations, one with a type I turn (beta-hairpin 4:4) and the other with a type I + G1 beta-bulge turn (beta-hairpin 3:5). Analysis of the conformational behavior of the peptides studied here demonstrates three favorable and two unfavorable cross-strand side-chain interactions for beta-hairpin formation. These results are in agreement with statistical data on side-chain interactions in protein beta-sheets. All the peptides in this study form significant populations of the beta-hairpin 3:5, but only some of them also adopt the beta-hairpin 4:4. The formation of beta-hairpin 4:4 requires the presence of at least two favorable cross-strand interactions, whereas beta-hairpin 3:5 seems to be less susceptible to side-chain interactions. A protein database analysis of beta-hairpins 3:5 and beta-hairpins 4:4 indicates that the former occur more frequently than the latter. In both peptides and proteins, beta-hairpins 3:5 have a larger right-handed twist than beta-hairpins 4:4, so that a factor contributing to the higher stability of beta-hairpin 3:5 relative to beta-hairpin 4:4 is due to an appropriate backbone conformation of the type I + G1 beta-bulge turn toward the right-handed twist usually observed in protein beta-sheets. In contrast, as suggested previously, backbone geometry of the type I turn is not adequate for the right-handed twist. Because analysis of buried hydrophobic surface areas on protein beta-hairpins reveals that beta-hairpins 3:5 bury more hydrophobic surface area than beta-hairpins 4:4, we suggest that the right-handed twist observed in beta-hairpin 3:5 allows a better packing of side chains and that this may also contribute to its higher intrinsic stability.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin R. L. Alpha-helix formation by peptides of defined sequence. Biophys Chem. 1995 Jun-Jul;55(1-2):127–135. doi: 10.1016/0301-4622(94)00146-b. [DOI] [PubMed] [Google Scholar]
  2. Blanco F. J., Jiménez M. A., Pineda A., Rico M., Santoro J., Nieto J. L. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry. 1994 May 17;33(19):6004–6014. doi: 10.1021/bi00185a041. [DOI] [PubMed] [Google Scholar]
  3. Case D. A., Dyson H. J., Wright P. E. Use of chemical shifts and coupling constants in nuclear magnetic resonance structural studies on peptides and proteins. Methods Enzymol. 1994;239:392–416. doi: 10.1016/s0076-6879(94)39015-0. [DOI] [PubMed] [Google Scholar]
  4. Chan A. W., Hutchinson E. G., Harris D., Thornton J. M. Identification, classification, and analysis of beta-bulges in proteins. Protein Sci. 1993 Oct;2(10):1574–1590. doi: 10.1002/pro.5560021004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chou K. C., Némethy G., Pottle M. S., Scheraga H. A. Folding of the twisted beta-sheet in bovine pancreatic trypsin inhibitor. Biochemistry. 1985 Dec 31;24(27):7948–7953. doi: 10.1021/bi00348a016. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  7. Cox J. P., Evans P. A., Packman L. C., Williams D. H., Woolfson D. N. Dissecting the structure of a partially folded protein. Circular dichroism and nuclear magnetic resonance studies of peptides from ubiquitin. J Mol Biol. 1993 Nov 20;234(2):483–492. doi: 10.1006/jmbi.1993.1600. [DOI] [PubMed] [Google Scholar]
  8. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  9. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  10. Kim C. A., Berg J. M. Thermodynamic beta-sheet propensities measured using a zinc-finger host peptide. Nature. 1993 Mar 18;362(6417):267–270. doi: 10.1038/362267a0. [DOI] [PubMed] [Google Scholar]
  11. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  12. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  13. Lasters I., Wodak S. J., Alard P., van Cutsem E. Structural principles of parallel beta-barrels in proteins. Proc Natl Acad Sci U S A. 1988 May;85(10):3338–3342. doi: 10.1073/pnas.85.10.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lyu P. C., Wemmer D. E., Zhou H. X., Pinker R. J., Kallenbach N. R. Capping interactions in isolated alpha helices: position-dependent substitution effects and structure of a serine-capped peptide helix. Biochemistry. 1993 Jan 19;32(2):421–425. doi: 10.1021/bi00053a006. [DOI] [PubMed] [Google Scholar]
  15. Minor D. L., Jr, Kim P. S. Context is a major determinant of beta-sheet propensity. Nature. 1994 Sep 15;371(6494):264–267. doi: 10.1038/371264a0. [DOI] [PubMed] [Google Scholar]
  16. Ramírez-Alvarado M., Blanco F. J., Serrano L. De novo design and structural analysis of a model beta-hairpin peptide system. Nat Struct Biol. 1996 Jul;3(7):604–612. doi: 10.1038/nsb0796-604. [DOI] [PubMed] [Google Scholar]
  17. Scholtz J. M., Baldwin R. L. The mechanism of alpha-helix formation by peptides. Annu Rev Biophys Biomol Struct. 1992;21:95–118. doi: 10.1146/annurev.bb.21.060192.000523. [DOI] [PubMed] [Google Scholar]
  18. Searle M. S., Williams D. H., Packman L. C. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native beta-hairpin. Nat Struct Biol. 1995 Nov;2(11):999–1006. doi: 10.1038/nsb1195-999. [DOI] [PubMed] [Google Scholar]
  19. Searle M. S., Zerella R., Williams D. H., Packman L. C. Native-like beta-hairpin structure in an isolated fragment from ferredoxin: NMR and CD studies of solvent effects on the N-terminal 20 residues. Protein Eng. 1996 Jul;9(7):559–565. doi: 10.1093/protein/9.7.559. [DOI] [PubMed] [Google Scholar]
  20. Sibanda B. L., Blundell T. L., Thornton J. M. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol. 1989 Apr 20;206(4):759–777. doi: 10.1016/0022-2836(89)90583-4. [DOI] [PubMed] [Google Scholar]
  21. Smith C. K., Regan L. Guidelines for protein design: the energetics of beta sheet side chain interactions. Science. 1995 Nov 10;270(5238):980–982. doi: 10.1126/science.270.5238.980. [DOI] [PubMed] [Google Scholar]
  22. Swindells M. B., MacArthur M. W., Thornton J. M. Intrinsic phi, psi propensities of amino acids, derived from the coil regions of known structures. Nat Struct Biol. 1995 Jul;2(7):596–603. doi: 10.1038/nsb0795-596. [DOI] [PubMed] [Google Scholar]
  23. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  24. Wang L., O'Connell T., Tropsha A., Hermans J. Molecular simulations of beta-sheet twisting. J Mol Biol. 1996 Sep 20;262(2):283–293. doi: 10.1006/jmbi.1996.0513. [DOI] [PubMed] [Google Scholar]
  25. Wishart D. S., Sykes B. D. Chemical shifts as a tool for structure determination. Methods Enzymol. 1994;239:363–392. doi: 10.1016/s0076-6879(94)39014-2. [DOI] [PubMed] [Google Scholar]
  26. de Alba E., Blanco F. J., Jiménez M. A., Rico M., Nieto J. L. Interactions responsible for the pH dependence of the beta-hairpin conformational population formed by a designed linear peptide. Eur J Biochem. 1995 Oct 1;233(1):283–292. doi: 10.1111/j.1432-1033.1995.283_1.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES