Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Feb;6(2):459–463. doi: 10.1002/pro.5560060224

P100, a transcriptional coactivator, is a human homologue of staphylococcal nuclease.

C P Ponting 1
PMCID: PMC2143632  PMID: 9041650

Abstract

Staphylococcus aureus nuclease (SNase) homologues, previously thought to be restricted to bacteria and archaea, are demonstrated by sequence analysis to be present also in eukaryotes. The human cellular coactivator p100 is shown to contain four repeats, each of which is a SNase homologue. Surprisingly, these repeats are unlikely to possess SNase-like activities as each lacks equivalent SNase catalytic residues, yet they may mediate p100's single-stranded DNA-binding function. Products of Corydalis sempervirens and Saccharomyces cerevisiae open reading frames are predicted to adopt the same fold and possess similar functions as SNase. Five additional hypothetical proteins of bacterial origin are also predicted to be active SNase-like nucleases, including one that appears to be C-terminally truncated in a manner analogous to an engineered active SNase variant. Conservation of Asp-19 and Asp-83 among these homologues suggests a re-evaluation of the roles of these residues in Ca(2+)-binding and/or catalysis.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrescu A. T., Gittis A. G., Abeygunawardana C., Shortle D. NMR structure of a stable "OB-fold" sub-domain isolated from staphylococcal nuclease. J Mol Biol. 1995 Jul 7;250(2):134–143. doi: 10.1006/jmbi.1995.0365. [DOI] [PubMed] [Google Scholar]
  2. Alt-Mörbe J., Stryker J. L., Fuqua C., Li P. L., Farrand S. K., Winans S. C. The conjugal transfer system of Agrobacterium tumefaciens octopine-type Ti plasmids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid vir genes. J Bacteriol. 1996 Jul;178(14):4248–4257. doi: 10.1128/jb.178.14.4248-4257.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altschul S. F., Boguski M. S., Gish W., Wootton J. C. Issues in searching molecular sequence databases. Nat Genet. 1994 Feb;6(2):119–129. doi: 10.1038/ng0294-119. [DOI] [PubMed] [Google Scholar]
  4. Becker A., Kleickmann A., Küster H., Keller M., Arnold W., Pühler A. Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. Mol Plant Microbe Interact. 1993 Nov-Dec;6(6):735–744. doi: 10.1094/mpmi-6-735. [DOI] [PubMed] [Google Scholar]
  5. Birney E., Thompson J. D., Gibson T. J. PairWise and SearchWise: finding the optimal alignment in a simultaneous comparison of a protein profile against all DNA translation frames. Nucleic Acids Res. 1996 Jul 15;24(14):2730–2739. doi: 10.1093/nar/24.14.2730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  7. Callebaut I., Mornon J. P. The human EBNA-2 coactivator p100: multidomain organization and relationship to the staphylococcal nuclease fold and to the tudor protein involved in Drosophila melanogaster development. Biochem J. 1997 Jan 1;321(Pt 1):125–132. doi: 10.1042/bj3210125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chesneau O., el Solh N. Nucleotide sequence of a nuc gene encoding the thermonuclease of Staphylococcus intermedius. Nucleic Acids Res. 1992 Oct 11;20(19):5232–5232. doi: 10.1093/nar/20.19.5232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Close S. M., Kado C. I. A gene near the plasmid pSa origin of replication encodes a nuclease. Mol Microbiol. 1992 Feb;6(4):521–527. doi: 10.1111/j.1365-2958.1992.tb01497.x. [DOI] [PubMed] [Google Scholar]
  10. Cotton F. A., Hazen E. E., Jr, Legg M. J. Staphylococcal nuclease: proposed mechanism of action based on structure of enzyme-thymidine 3',5'-bisphosphate-calcium ion complex at 1.5-A resolution. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2551–2555. doi: 10.1073/pnas.76.6.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cuatrecasas P., Fuchs S., Anfinsen C. B. Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus. J Biol Chem. 1967 Apr 10;242(7):1541–1547. [PubMed] [Google Scholar]
  12. Cuatrecasas P., Fuchs S., Anfinsen C. B. The binding of nucleotides and calcium to the extracellular nuclease of Staphylococcus aureus. Studies by gel filtration. J Biol Chem. 1967 Jul 10;242(13):3063–3067. [PubMed] [Google Scholar]
  13. Gerlitz M., Hrabak O., Schwab H. Partitioning of broad-host-range plasmid RP4 is a complex system involving site-specific recombination. J Bacteriol. 1990 Nov;172(11):6194–6203. doi: 10.1128/jb.172.11.6194-6203.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Green S. M., Meeker A. K., Shortle D. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state. Biochemistry. 1992 Jun 30;31(25):5717–5728. doi: 10.1021/bi00140a005. [DOI] [PubMed] [Google Scholar]
  15. Gribskov M., McLachlan A. D., Eisenberg D. Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4355–4358. doi: 10.1073/pnas.84.13.4355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hynes T. R., Fox R. O. The crystal structure of staphylococcal nuclease refined at 1.7 A resolution. Proteins. 1991;10(2):92–105. doi: 10.1002/prot.340100203. [DOI] [PubMed] [Google Scholar]
  17. Judice J. K., Gamble T. R., Murphy E. C., de Vos A. M., Schultz P. G. Probing the mechanism of staphylococcal nuclease with unnatural amino acids: kinetic and structural studies. Science. 1993 Sep 17;261(5128):1578–1581. doi: 10.1126/science.8103944. [DOI] [PubMed] [Google Scholar]
  18. Lawrence C. E., Altschul S. F., Boguski M. S., Liu J. S., Neuwald A. F., Wootton J. C. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science. 1993 Oct 8;262(5131):208–214. doi: 10.1126/science.8211139. [DOI] [PubMed] [Google Scholar]
  19. Libson A. M., Gittis A. G., Lattman E. E. Crystal structures of the binary Ca2+ and pdTp complexes and the ternary complex of the Asp21-->Glu mutant of staphylococcal nuclease. Implications for catalysis and ligand binding. Biochemistry. 1994 Jul 5;33(26):8007–8016. [PubMed] [Google Scholar]
  20. Loll P. J., Lattman E. E. The crystal structure of the ternary complex of staphylococcal nuclease, Ca2+, and the inhibitor pdTp, refined at 1.65 A. Proteins. 1989;5(3):183–201. doi: 10.1002/prot.340050302. [DOI] [PubMed] [Google Scholar]
  21. Mercado-Blanco J., Olivares J. The large nonsymbiotic plasmid pRmeGR4a of Rhizobium meliloti GR4 encodes a protein involved in replication that has homology with the RepC protein of Agrobacterium plasmids. Plasmid. 1994 Jul;32(1):75–79. doi: 10.1006/plas.1994.1046. [DOI] [PubMed] [Google Scholar]
  22. Murzin A. G. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 1993 Mar;12(3):861–867. doi: 10.1002/j.1460-2075.1993.tb05726.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schaller A., Schmid J., Amrhein N. Plant cDNA similar to a bacterial plasmid partition locus. Plant Physiol. 1992 Jun;99(2):777–778. doi: 10.1104/pp.99.2.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  25. Shortle D., Stites W. E., Meeker A. K. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry. 1990 Sep 4;29(35):8033–8041. doi: 10.1021/bi00487a007. [DOI] [PubMed] [Google Scholar]
  26. Tatusov R. L., Altschul S. F., Koonin E. V. Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12091–12095. doi: 10.1073/pnas.91.25.12091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tong X., Drapkin R., Yalamanchili R., Mosialos G., Kieff E. The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol. 1995 Sep;15(9):4735–4744. doi: 10.1128/mcb.15.9.4735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tucker P. W., Hazen E. E., Jr, Cotton F. A. Staphylococcal nuclease reviewed: a prototypic study in contemporary enzymology. I. Isolation; physical and enzymatic properties. Mol Cell Biochem. 1978 Dec 22;22(2-3):67–77. doi: 10.1007/BF00496235. [DOI] [PubMed] [Google Scholar]
  30. Tucker P. W., Hazen E. E., Jr, Cotton F. A. Staphylococcal nuclease reviewed: a prototypic study in contemporary enzymology. II. Solution studies of the nucleotide binding site and the effects of nucleotide binding. Mol Cell Biochem. 1979 Jan 15;23(1):3–16. doi: 10.1007/BF00226675. [DOI] [PubMed] [Google Scholar]
  31. Tucker P. W., Hazen E. E., Jr, Cotton F. A. Staphylococcal nuclease reviewed: a prototypic study in contemporary enzymology. III. Correlation of the three-dimensional structure with the mechanisms of enzymatic action. Mol Cell Biochem. 1979 Jan 26;23(2):67–86. doi: 10.1007/BF00226229. [DOI] [PubMed] [Google Scholar]
  32. Wang J. F., LeMaster D. M., Markley J. L. Two-dimensional NMR studies of staphylococcal nuclease. 1. Sequence-specific assignments of hydrogen-1 signals and solution structure of the nuclease H124L-thymidine 3',5'-bisphosphate-Ca2+ ternary complex. Biochemistry. 1990 Jan 9;29(1):88–101. doi: 10.1021/bi00453a011. [DOI] [PubMed] [Google Scholar]
  33. Weber D. J., Gittis A. G., Mullen G. P., Abeygunawardana C., Lattman E. E., Mildvan A. S. NMR docking of a substrate into the X-ray structure of staphylococcal nuclease. Proteins. 1992 Aug;13(4):275–287. doi: 10.1002/prot.340130402. [DOI] [PubMed] [Google Scholar]
  34. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yoshioka Y., Fujita Y., Ohtsubo E. Nucleotide sequence of the promoter-distal region of the tra operon of plasmid R100, including traI (DNA helicase I) and traD genes. J Mol Biol. 1990 Jul 5;214(1):39–53. doi: 10.1016/0022-2836(90)90145-C. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES