Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Feb;6(2):484–489. doi: 10.1002/pro.5560060230

Allosteric effectors do not alter the oxygen affinity of hemoglobin crystals.

A Mozzarelli 1, C Rivetti 1, G L Rossi 1, W A Eaton 1, E R Henry 1
PMCID: PMC2143639  PMID: 9041656

Abstract

In solution, the oxygen affinity of hemoglobin in the T quaternary structure is decreased in the presence of allosteric effectors such as protons and organic phosphates. To explain these effects, as well as the absence of the Bohr effect and the lower oxygen affinity of T-state hemoglobin in the crystal compared to solution, Rivetti C et al. (1993a, Biochemistry 32:2888-2906) suggested that there are high- and low-affinity subunit conformations of T, associated with broken and unbroken intersubunit salt bridges. In this model, the crystal of T-state hemoglobin has the lowest possible oxygen affinity because the salt bridges remain intact upon oxygenation. Binding of allosteric effectors in the crystal should therefore not influence the oxygen affinity. To test this hypothesis, we used polarized absorption spectroscopy to measure oxygen binding curves of single crystals of hemoglobin in the T quaternary structure in the presence of the "strong" allosteric effectors, inositol hexaphosphate and bezafibrate. In solution, these effectors reduce the oxygen affinity of the T state by 10-30-fold. We find no change in affinity (< 10%) of the crystal. The crystal binding curve, moreover, is noncooperative, which is consistent with the essential feature of the two-state allosteric model of Monod J, Wyman J, and Changeux JP (1965, J Mol Biol 12:88-118) that cooperative binding requires a change in quaternary structure. Noncooperative binding by the crystal is not caused by cooperative interactions being masked by fortuitous compensation from a difference in the affinity of the alpha and beta subunits. This was shown by calculating the separate alpha and beta subunit binding curves from the two sets of polarized optical spectra using geometric factors from the X-ray structures of deoxygenated and fully oxygenated T-state molecules determined by Paoli M et al. (1996, J Mol Biol 256:775-792).

Full Text

The Full Text of this article is available as a PDF (577.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K., Smith F. R. The hemoglobin tetramer: a three-state molecular switch for control of ligand affinity. Annu Rev Biophys Biophys Chem. 1987;16:583–609. doi: 10.1146/annurev.bb.16.060187.003055. [DOI] [PubMed] [Google Scholar]
  2. Ackers G. K. The energetics of ligand-linked subunit assembly in hemoglobin require a third allosteric structure. Biophys Chem. 1990 Aug 31;37(1-3):371–382. doi: 10.1016/0301-4622(90)88036-r. [DOI] [PubMed] [Google Scholar]
  3. Bettati S., Mozzarelli A., Rossi G. L., Tsuneshige A., Yonetani T., Eaton W. A., Henry E. R. Oxygen binding by single crystals of hemoglobin: the problem of cooperativity and inequivalence of alpha and beta subunits. Proteins. 1996 Aug;25(4):425–437. doi: 10.1002/prot.3. [DOI] [PubMed] [Google Scholar]
  4. Brunori M., Coletta M., Di Cera E. A cooperative model for ligand binding to biological macromolecules as applied to oxygen carriers. Biophys Chem. 1986 Mar;23(3-4):215–222. doi: 10.1016/0301-4622(86)85006-2. [DOI] [PubMed] [Google Scholar]
  5. Edelstein S. J. An allosteric theory for hemoglobin incorporating asymmetric states to test the putative molecular code for cooperativity. J Mol Biol. 1996 Apr 12;257(4):737–744. doi: 10.1006/jmbi.1996.0198. [DOI] [PubMed] [Google Scholar]
  6. Edelstein S. J. Cooperative interactions of hemoglobin. Annu Rev Biochem. 1975;44:209–232. doi: 10.1146/annurev.bi.44.070175.001233. [DOI] [PubMed] [Google Scholar]
  7. Gill S. J., Robert C. H., Coletta M., Di Cera E., Brunori M. Cooperative free energies for nested allosteric models as applied to human hemoglobin. Biophys J. 1986 Oct;50(4):747–752. doi: 10.1016/S0006-3495(86)83514-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herzfeld J., Stanley H. E. A general approach to co-operativity and its application to the oxygen equilibrium of hemoglobin and its effectors. J Mol Biol. 1974 Jan 15;82(2):231–265. doi: 10.1016/0022-2836(74)90343-x. [DOI] [PubMed] [Google Scholar]
  9. Huang Y., Doyle M. L., Ackers G. K. The oxygen-binding intermediates of human hemoglobin: evaluation of their contributions to cooperativity using zinc-containing hybrids. Biophys J. 1996 Oct;71(4):2094–2105. doi: 10.1016/S0006-3495(96)79408-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kavanaugh J. S., Chafin D. R., Arnone A., Mozzarelli A., Rivetti C., Rossi G. L., Kwiatkowski L. D., Noble R. W. Structure and oxygen affinity of crystalline desArg141 alpha human hemoglobin A in the T state. J Mol Biol. 1995 Apr 21;248(1):136–150. doi: 10.1006/jmbi.1995.0207. [DOI] [PubMed] [Google Scholar]
  11. Lee A. W., Karplus M., Poyart C., Bursaux E. Analysis of proton release in oxygen binding by hemoglobin: implications for the cooperative mechanism. Biochemistry. 1988 Feb 23;27(4):1285–1301. doi: 10.1021/bi00404a031. [DOI] [PubMed] [Google Scholar]
  12. Liddington R., Derewenda Z., Dodson E., Hubbard R., Dodson G. High resolution crystal structures and comparisons of T-state deoxyhaemoglobin and two liganded T-state haemoglobins: T(alpha-oxy)haemoglobin and T(met)haemoglobin. J Mol Biol. 1992 Nov 20;228(2):551–579. doi: 10.1016/0022-2836(92)90842-8. [DOI] [PubMed] [Google Scholar]
  13. Luisi B., Liddington B., Fermi G., Shibayama N. Structure of deoxy-quaternary haemoglobin with liganded beta subunits. J Mol Biol. 1990 Jul 5;214(1):7–14. doi: 10.1016/0022-2836(90)90139-d. [DOI] [PubMed] [Google Scholar]
  14. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  15. Marden M. C., Bohn B., Kister J., Poyart C. Effectors of hemoglobin. Separation of allosteric and affinity factors. Biophys J. 1990 Mar;57(3):397–403. doi: 10.1016/S0006-3495(90)82556-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Perrella M., Benazzi L., Shea M. A., Ackers G. K. Subunit hybridization studies of partially ligated cyanomethemoglobins using a cryogenic method. Evidence for three allosteric states. Biophys Chem. 1990 Jan;35(1):97–103. doi: 10.1016/0301-4622(90)80064-e. [DOI] [PubMed] [Google Scholar]
  17. Perrella M., Denisov I. Low-temperature electrophoresis methods. Methods Enzymol. 1995;259:468–487. doi: 10.1016/0076-6879(95)59057-9. [DOI] [PubMed] [Google Scholar]
  18. Rivetti C., Mozzarelli A., Rossi G. L., Henry E. R., Eaton W. A. Oxygen binding by single crystals of hemoglobin. Biochemistry. 1993 Mar 23;32(11):2888–2906. doi: 10.1021/bi00062a021. [DOI] [PubMed] [Google Scholar]
  19. Rivetti C., Mozzarelli A., Rossi G. L., Kwiatkowski L. D., Wierzba A. M., Noble R. W. Effect of chloride on oxygen binding to crystals of hemoglobin Rothschild (beta 37 Trp-->Arg) in the T quaternary structure. Biochemistry. 1993 Jun 29;32(25):6411–6418. doi: 10.1021/bi00076a014. [DOI] [PubMed] [Google Scholar]
  20. Shibayama N., Saigo S. Fixation of the quaternary structures of human adult haemoglobin by encapsulation in transparent porous silica gels. J Mol Biol. 1995 Aug 11;251(2):203–209. doi: 10.1006/jmbi.1995.0427. [DOI] [PubMed] [Google Scholar]
  21. Shulman R. G., Hopfield J. J., Ogawa S. Allosteric interpretation of haemoglobin properties. Q Rev Biophys. 1975 Jul;8(3):325–420. doi: 10.1017/s0033583500001840. [DOI] [PubMed] [Google Scholar]
  22. Szabo A., Karplus M. A mathematical model for structure-function relations in hemoglobin. J Mol Biol. 1972 Dec 14;72(1):163–197. doi: 10.1016/0022-2836(72)90077-0. [DOI] [PubMed] [Google Scholar]
  23. Szabo A., Karplus M. Analysis of cooperativity in hemoglobin. Valency hybrids, oxidation, and methemoglobin replacement reactions. Biochemistry. 1975 Mar 11;14(5):931–940. doi: 10.1021/bi00676a009. [DOI] [PubMed] [Google Scholar]
  24. Waller D. A., Liddington R. C. Refinement of a partially oxygenated T state human haemoglobin at 1.5 A resolution. Acta Crystallogr B. 1990 Jun 1;46(Pt 3):409–418. doi: 10.1107/s0108768190000313. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES