Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Feb;6(2):304–314. doi: 10.1002/pro.5560060205

The NMR side-chain assignments and solution structure of enzyme IIBcellobiose of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli.

E Ab 1, G Schuurman-Wolters 1, J Reizer 1, M H Saier 1, K Dijkstra 1, R M Scheek 1, G T Robillard 1
PMCID: PMC2143641  PMID: 9041631

Abstract

The assignment of the side-chain NMR resonances and the determination of the three-dimensional solution structure of the C10S mutant of enzyme IIBcellobiose (IIBcel) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli are presented. The side-chain resonances were assigned nearly completely using a variety of mostly heteronuclear NMR experiments, including HCCH-TOCSY, HCCH-COSY, and COCCH-TOCSY experiments as well as CBCACOHA, CBCA(CO)NH, and HBHA(CBCA)(CO)NH experiments. In order to obtain the three-dimensional structure, NOE data were collected from 15N-NOESY-HSQC, 13C-HSQC-NOESY, and 2D NOE experiments. The distance restraints derived from these NOE data were used in distance geometry calculations followed by molecular dynamics and simulated annealing protocols. In an iterative procedure, additional NOE assignments were derived from the calculated structures and new structures were calculated. The final set of structures, calculated with approximately 2000 unambiguous and ambiguous distance restraints, has an rms deviation of 1.1 A on C alpha atoms. IIBcel consists of a four stranded parallel beta-sheet, in the order 2134. The sheet is flanked with two and three alpha-helices on either side. Residue 10, a cysteine in the wild-type enzyme, which is phosphorylated during the catalytic cycle, is located at the end of the first beta-strand. A loop that is proposed to be involved in the binding of the phosphoryl-group follows the cysteine. The loop appears to be disordered in the unphosphorylated state.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ab E., Schuurman-Wolters G. K., Saier M. H., Reizer J., Jacuinod M., Roepstorff P., Dijkstra K., Scheek R. M., Robillard G. T. Enzyme IIBcellobiose of the phosphoenol-pyruvate-dependent phosphotransferase system of Escherichia coli: backbone assignment and secondary structure determined by three-dimensional NMR spectroscopy. Protein Sci. 1994 Feb;3(2):282–290. doi: 10.1002/pro.5560030212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Golic Grdadolnik S., Eberstadt M., Gemmecker G., Kessler H., Buhr A., Erni B. The glucose transporter of Escherichia coli. Assignment of the 1H, 13C and 15N resonances and identification of the secondary structure of the soluble IIB domain. Eur J Biochem. 1994 Feb 1;219(3):945–952. doi: 10.1111/j.1432-1033.1994.tb18576.x. [DOI] [PubMed] [Google Scholar]
  3. Grzesiek S., Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993 Mar;3(2):185–204. doi: 10.1007/BF00178261. [DOI] [PubMed] [Google Scholar]
  4. Guan K. L., Dixon J. E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem. 1991 Sep 15;266(26):17026–17030. [PubMed] [Google Scholar]
  5. Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
  6. Ikura M., Kay L. E., Bax A. Improved three-dimensional 1H-13C-1H correlation spectroscopy of a 13C-labeled protein using constant-time evolution. J Biomol NMR. 1991 Sep;1(3):299–304. doi: 10.1007/BF01875522. [DOI] [PubMed] [Google Scholar]
  7. Kaptein R., Boelens R., Scheek R. M., van Gunsteren W. F. Protein structures from NMR. Biochemistry. 1988 Jul 26;27(15):5389–5395. doi: 10.1021/bi00415a001. [DOI] [PubMed] [Google Scholar]
  8. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  9. Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
  10. Meadow N. D., Fox D. K., Roseman S. The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem. 1990;59:497–542. doi: 10.1146/annurev.bi.59.070190.002433. [DOI] [PubMed] [Google Scholar]
  11. Meijberg W., Schuurman-Wolters G. K., Robillard G. T. Interdomain interactions between the hydrophilic domains of the mannitol transporter of Escherichia coli in the unphosphorylated and phosphorylated states. Biochemistry. 1996 Feb 27;35(8):2759–2766. doi: 10.1021/bi952567b. [DOI] [PubMed] [Google Scholar]
  12. Nilges M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins. 1993 Nov;17(3):297–309. doi: 10.1002/prot.340170307. [DOI] [PubMed] [Google Scholar]
  13. Olejniczak E. T., Xu R. X., Fesik S. W. A 4D HCCH-TOCSY experiment for assigning the side chain 1H and 13C resonances of proteins. J Biomol NMR. 1992 Nov;2(6):655–659. doi: 10.1007/BF02192854. [DOI] [PubMed] [Google Scholar]
  14. Parker L. L., Hall B. G. Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. Genetics. 1990 Mar;124(3):455–471. doi: 10.1093/genetics/124.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pas H. H., Meyer G. H., Kruizinga W. H., Tamminga K. S., van Weeghel R. P., Robillard G. T. 31phospho-NMR demonstration of phosphocysteine as a catalytic intermediate on the Escherichia coli phosphotransferase system EIIMtl. J Biol Chem. 1991 Apr 15;266(11):6690–6692. [PubMed] [Google Scholar]
  16. Pas H. H., Robillard G. T. S-phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EIIMtl. Biochemistry. 1988 Aug 9;27(16):5835–5839. doi: 10.1021/bi00416a002. [DOI] [PubMed] [Google Scholar]
  17. Pas H. H., ten Hoeve-Duurkens R. H., Robillard G. T. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: mannitol-specific EII contains two phosphoryl binding sites per monomer and one high-affinity mannitol binding site per dimer. Biochemistry. 1988 Jul 26;27(15):5520–5525. doi: 10.1021/bi00415a020. [DOI] [PubMed] [Google Scholar]
  18. Reizer J., Reizer A., Saier M. H., Jr The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res Microbiol. 1990 Nov-Dec;141(9):1061–1067. doi: 10.1016/0923-2508(90)90079-6. [DOI] [PubMed] [Google Scholar]
  19. Saier M. H., Jr, Reizer J. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol. 1992 Mar;174(5):1433–1438. doi: 10.1128/jb.174.5.1433-1438.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stuckey J. A., Schubert H. L., Fauman E. B., Zhang Z. Y., Dixon J. E., Saper M. A. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate. Nature. 1994 Aug 18;370(6490):571–575. doi: 10.1038/370571a0. [DOI] [PubMed] [Google Scholar]
  21. Su X. D., Taddei N., Stefani M., Ramponi G., Nordlund P. The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase. Nature. 1994 Aug 18;370(6490):575–578. doi: 10.1038/370575a0. [DOI] [PubMed] [Google Scholar]
  22. Yamazaki T., Yoshida M., Nagayama K. Complete assignments of magnetic resonances of ribonuclease H from Escherichia coli by double- and triple-resonance 2D and 3D NMR spectroscopies. Biochemistry. 1993 Jun 1;32(21):5656–5669. doi: 10.1021/bi00072a023. [DOI] [PubMed] [Google Scholar]
  23. Zuiderweg E. R., Fesik S. W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry. 1989 Mar 21;28(6):2387–2391. doi: 10.1021/bi00432a008. [DOI] [PubMed] [Google Scholar]
  24. van Nuland N. A., Grötzinger J., Dijkstra K., Scheek R. M., Robillard G. T. Determination of the three-dimensional solution structure of the histidine-containing phosphocarrier protein HPr from Escherichia coli using multidimensional NMR spectroscopy. Eur J Biochem. 1992 Dec 15;210(3):881–891. doi: 10.1111/j.1432-1033.1992.tb17492.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES