Abstract
Yeast peroxisomal catalase A, obtained at high yields by over expression of the C-terminally modified gene from a 2 mu-plasmid, has been crystallized in a form suitable for high resolution X-ray diffraction studies. Brownish crystals with bipyrimidal morphology and reaching ca. 0.8 mm in size were produced by the hanging drop method using ammonium sulphate as precipitant. These crystals diffract better than 2.0 A resolution and belong to the hexagonal space group P6(1)22 with unit cell parameters a = b = 184.3 A and c = 305.5 A. An X-ray data set with 76% completeness at 3.2 A resolution was collected in a rotating anode generator using mirrors to improve the collimation of the beam. An initial solution was obtained by molecular replacement only when using a beef liver catalase tetramer model in which fragments with no sequence homology had been omitted, about 150 residues per subunit. In the structure found a single molecule of catalase A (a tetramer with accurate 222 molecular symmetry) is located in the asymmetric unit of the crystal with an estimated solvent content of about 61%. The preliminary analysis of the structure confirms the absence of a carboxy terminal domain as the one found in the catalase from Penicillium vitalae, the only other fungal catalase structure available. The NADPH binding site appears to be involved in crystal contacts, suggesting that heterogeneity in the occupancy of the nucleotide can be a major difficulty during crystallization.
Full Text
The Full Text of this article is available as a PDF (440.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebi H., Wyss S. R., Scherz B., Skvaril F. Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem. 1974 Oct 1;48(1):137–145. doi: 10.1111/j.1432-1033.1974.tb03751.x. [DOI] [PubMed] [Google Scholar]
- Binder M., Schanz M., Hartig A. Vector-mediated overexpression of catalase A in the yeast Saccharomyces cerevisiae induces inclusion body formation. Eur J Cell Biol. 1991 Apr;54(2):305–312. [PubMed] [Google Scholar]
- Bravo J., Verdaguer N., Tormo J., Betzel C., Switala J., Loewen P. C., Fita I. Crystal structure of catalase HPII from Escherichia coli. Structure. 1995 May 15;3(5):491–502. doi: 10.1016/s0969-2126(01)00182-4. [DOI] [PubMed] [Google Scholar]
- Cohen G., Rapatz W., Ruis H. Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur J Biochem. 1988 Sep 1;176(1):159–163. doi: 10.1111/j.1432-1033.1988.tb14263.x. [DOI] [PubMed] [Google Scholar]
- Gouet P., Jouve H. M., Dideberg O. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J Mol Biol. 1995 Jun 23;249(5):933–954. doi: 10.1006/jmbi.1995.0350. [DOI] [PubMed] [Google Scholar]
- Hillar A., Nicholls P., Switala J., Loewen P. C. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes. Biochem J. 1994 Jun 1;300(Pt 2):531–539. doi: 10.1042/bj3000531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- Murshudov G. N., Melik-Adamyan W. R., Grebenko A. I., Barynin V. V., Vagin A. A., Vainshtein B. K., Dauter Z., Wilson K. S. Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 A resolution. FEBS Lett. 1992 Nov 9;312(2-3):127–131. doi: 10.1016/0014-5793(92)80919-8. [DOI] [PubMed] [Google Scholar]
- Seah T. C., Bhatti A. R., Kaplan J. G. Novel catalatic proteins of bakers' yeast. I. An atypical catalase. Can J Biochem. 1973 Nov;51(11):1551–1555. doi: 10.1139/o73-208. [DOI] [PubMed] [Google Scholar]
- Seah T. C., Kaplan J. G. Purification and properties of the catalase of bakers' yeast. J Biol Chem. 1973 Apr 25;248(8):2889–2893. [PubMed] [Google Scholar]
- Vainshtein B. K., Melik-Adamyan W. R., Barynin V. V., Vagin A. A., Grebenko A. I., Borisov V. V., Bartels K. S., Fita I., Rossmann M. G. Three-dimensional structure of catalase from Penicillium vitale at 2.0 A resolution. J Mol Biol. 1986 Mar 5;188(1):49–61. doi: 10.1016/0022-2836(86)90479-1. [DOI] [PubMed] [Google Scholar]
- Zamocky M., Herzog C., Nykyri L. M., Koller F. Site-directed mutagenesis of the lower parts of the major substrate channel of yeast catalase A leads to highly increased peroxidatic activity. FEBS Lett. 1995 Jul 3;367(3):241–245. doi: 10.1016/0014-5793(95)00568-t. [DOI] [PubMed] [Google Scholar]
