Abstract
We describe the insertion of an iron-sulfur center into a designed four alpha-helix model protein. The model protein was re-engineered by introducing four cysteine ligands required for the coordination of the mulinucleate cluster into positions in the main-chain directly analogous to the domain predicted to ligand the interpeptide [4Fe-4S (S-cys)4] cluster, Fx, from PsaA and PsaB of the Photosystem I reaction center. This was achieved by inserting the sequence, CDGPGRGGTC, which is conserved in PsaA and PsaB, into interhelical loops 1 and 3 of the four alpha-helix model. The holoprotein was characterized spectroscopically after insertion of the iron-sulfur center in vitro. EPR spectra confirmed the cluster is a [4Fe-4S] type, indicating that the cysteine thiolate ligands were positioned as designed. The midpoint potential of the iron-sulfur center in the model holoprotein was determined via redox titration and shown to be -422 mV (pH 8.3, n = 1). The results support proposals advanced for the structure of the domain of the [4Fe-4S] Fx cluster in Photosystem I based upon sequence predictions and molecular modeling. We suggest that the lower potential of the Fx cluster is most likely due to factors in the protein environment of Fx rather than the identity of the residues proximal to the coordinating ligands.
Full Text
The Full Text of this article is available as a PDF (648.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beinert H. Recent developments in the field of iron-sulfur proteins. FASEB J. 1990 May;4(8):2483–2491. doi: 10.1096/fasebj.4.8.2185975. [DOI] [PubMed] [Google Scholar]
- Evans M. C., Reeves S. G., Cammack R. Determination of the oxidation-reduction potential of the bound iron-sulphur proteins of the primary electron acceptor complex of photosystem I in spinach chloroplasts. FEBS Lett. 1974 Dec 1;49(1):111–114. doi: 10.1016/0014-5793(74)80644-7. [DOI] [PubMed] [Google Scholar]
- Evans M. C., Sihra C. K., Cammack R. The properties of the primary electron acceptor in the Photosystem I reaction centre of spinach chloroplasts and its interaction with P700 and the bound ferredoxin in various oxidation-reduction states. Biochem J. 1976 Jul 15;158(1):71–77. doi: 10.1042/bj1580071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuyama K., Nagahara Y., Tsukihara T., Katsube Y., Hase T., Matsubara H. Tertiary structure of Bacillus thermoproteolyticus [4Fe-4S] ferredoxin. Evolutionary implications for bacterial ferredoxins. J Mol Biol. 1988 Jan 5;199(1):183–193. doi: 10.1016/0022-2836(88)90388-9. [DOI] [PubMed] [Google Scholar]
- Georgiadis M. M., Komiya H., Chakrabarti P., Woo D., Kornuc J. J., Rees D. C. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science. 1992 Sep 18;257(5077):1653–1659. doi: 10.1126/science.1529353. [DOI] [PubMed] [Google Scholar]
- Langen R., Jensen G. M., Jacob U., Stephens P. J., Warshel A. Protein control of iron-sulfur cluster redox potentials. J Biol Chem. 1992 Dec 25;267(36):25625–25627. [PubMed] [Google Scholar]
- Li N., Zhao J. D., Warren P. V., Warden J. T., Bryant D. A., Golbeck J. H. PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry. 1991 Aug 6;30(31):7863–7872. doi: 10.1021/bi00245a028. [DOI] [PubMed] [Google Scholar]
- Moura J. J., Macedo A. L., Palma P. N. Ferredoxins. Methods Enzymol. 1994;243:165–188. doi: 10.1016/0076-6879(94)43014-4. [DOI] [PubMed] [Google Scholar]
- Regan L., Clarke N. D. A tetrahedral zinc(II)-binding site introduced into a designed protein. Biochemistry. 1990 Dec 11;29(49):10878–10883. doi: 10.1021/bi00501a003. [DOI] [PubMed] [Google Scholar]
- Regan L., DeGrado W. F. Characterization of a helical protein designed from first principles. Science. 1988 Aug 19;241(4868):976–978. doi: 10.1126/science.3043666. [DOI] [PubMed] [Google Scholar]
- Regan L., Rockwell A., Wasserman Z., DeGrado W. Disulfide crosslinks to probe the structure and flexibility of a designed four-helix bundle protein. Protein Sci. 1994 Dec;3(12):2419–2427. doi: 10.1002/pro.5560031225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson D. E., Farid R. S., Moser C. C., Urbauer J. L., Mulholland S. E., Pidikiti R., Lear J. D., Wand A. J., DeGrado W. F., Dutton P. L. Design and synthesis of multi-haem proteins. Nature. 1994 Mar 31;368(6470):425–432. doi: 10.1038/368425a0. [DOI] [PubMed] [Google Scholar]
- Rodday S. M., Do L. T., Chynwat V., Frank H. A., Biggins J. Site-directed mutagenesis of the subunit PsaC establishes a surface-exposed domain interacting with the photosystem I core binding site. Biochemistry. 1996 Sep 10;35(36):11832–11838. doi: 10.1021/bi9612834. [DOI] [PubMed] [Google Scholar]
- Rodday S. M., Webber A. N., Bingham S. E., Biggins J. Evidence that the FX domain in photosystem I interacts with the subunit PsaC: site-directed changes in PsaB destabilize the subunit interaction in Chlamydomonas reinhardtii. Biochemistry. 1995 May 16;34(19):6328–6334. doi: 10.1021/bi00019a010. [DOI] [PubMed] [Google Scholar]
- Sigfridsson K., Hansson O., Brzezinski P. Electrogenic light reactions in photosystem I: resolution of electron-transfer rates between the iron-sulfur centers. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3458–3462. doi: 10.1073/pnas.92.8.3458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao J. D., Warren P. V., Li N., Bryant D. A., Golbeck J. H. Reconstitution of electron transport in photosystem I with PsaC and PsaD proteins expressed in Escherichia coli. FEBS Lett. 1990 Dec 10;276(1-2):175–180. doi: 10.1016/0014-5793(90)80536-r. [DOI] [PubMed] [Google Scholar]
