Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Feb;6(2):469–472. doi: 10.1002/pro.5560060226

Identification of a novel phosphatase sequence motif.

J Stukey 1, G M Carman 1
PMCID: PMC2143653  PMID: 9041652

Abstract

We have identified a novel, conserved phosphatase sequence motif, KXXXXXXRP-(X12-54)-PSGH-(X31-54)-SRXXXXX HXXXD, that is shared among several lipid phosphatases, the mammalian glucose-6-phosphatases, and a collection of bacterial nonspecific acid phosphatases. This sequence was also found in the vanadium-containing chloroperoxidase of Curvularia inaequalis. Several lines of evidence support this phosphatase motif identification. Crystal structure data on chloroperoxidase revealed that all three domains are in close proximity and several of the conserved residues are involved in the binding of the cofactor, vanadate, a compound structurally similar to phosphate. Structure-function analysis of the human glucose-6-phosphatase has shown that two of the conserved residues (the first domain arginine and the central domain histidine) are essential for enzyme activity. This conserved sequence motif was used to identify nine additional putative phosphatases from sequence databases, one of which has been determined to be a lipid phosphatase in yeast.

Full Text

The Full Text of this article is available as a PDF (388.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bazan J. F., Fletterick R. J., Pilkis S. J. Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9642–9646. doi: 10.1073/pnas.86.24.9642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cantley L. C., Jr, Resh M. D., Guidotti G. Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature. 1978 Apr 6;272(5653):552–554. doi: 10.1038/272552a0. [DOI] [PubMed] [Google Scholar]
  4. Countaway J. L., Waddell I. D., Burchell A., Arion W. J. The phosphohydrolase component of the hepatic microsomal glucose-6-phosphatase system is a 36.5-kilodalton polypeptide. J Biol Chem. 1988 Feb 25;263(6):2673–2678. [PubMed] [Google Scholar]
  5. Feldman F., Butler L. G. Protein-bound phosphoryl histidine: a probable intermediate in the microsomal glucose-6-phosphatase-inorganic pyrophosphatase reaction. Biochim Biophys Acta. 1972 Jun 16;268(3):698–710. doi: 10.1016/0005-2744(72)90274-4. [DOI] [PubMed] [Google Scholar]
  6. Haber B. A., Chin S., Chuang E., Buikhuisen W., Naji A., Taub R. High levels of glucose-6-phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes. J Clin Invest. 1995 Feb;95(2):832–841. doi: 10.1172/JCI117733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Karlish S. J., Beaugé L. A., Glynn I. M. Vanadate inhibits (Na+ + K+)ATPase by blocking a conformational change of the unphosphorylated form. Nature. 1979 Nov 15;282(5736):333–335. doi: 10.1038/282333a0. [DOI] [PubMed] [Google Scholar]
  8. Kasahara M., Nakata A., Shinagawa H. Molecular analysis of the Salmonella typhimurium phoN gene, which encodes nonspecific acid phosphatase. J Bacteriol. 1991 Nov;173(21):6760–6765. doi: 10.1128/jb.173.21.6760-6765.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kjems J., Garrett R. A. Novel expression of the ribosomal RNA genes in the extreme thermophile and archaebacterium Desulfurococcus mobilis. EMBO J. 1987 Nov;6(11):3521–3530. doi: 10.1002/j.1460-2075.1987.tb02678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lei K. J., Shelly L. L., Pan C. J., Sidbury J. B., Chou J. Y. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science. 1993 Oct 22;262(5133):580–583. doi: 10.1126/science.8211187. [DOI] [PubMed] [Google Scholar]
  11. Messerschmidt A., Wever R. X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):392–396. doi: 10.1073/pnas.93.1.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ostanin K., Saeed A., Van Etten R. L. Heterologous expression of human prostatic acid phosphatase and site-directed mutagenesis of the enzyme active site. J Biol Chem. 1994 Mar 25;269(12):8971–8978. [PubMed] [Google Scholar]
  13. Pond J. L., Eddy C. K., Mackenzie K. F., Conway T., Borecky D. J., Ingram L. O. Cloning, sequencing, and characterization of the principal acid phosphatase, the phoC+ product, from Zymomonas mobilis. J Bacteriol. 1989 Feb;171(2):767–774. doi: 10.1128/jb.171.2.767-774.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rauschenbach R., Isernhagen M., Noeske-Jungblut C., Boidol W., Siewert G. Cloning sequencing and expression of the gene for cytochrome P450meg, the steroid-15 beta-monooxygenase from Bacillus megaterium ATCC 13368. Mol Gen Genet. 1993 Oct;241(1-2):170–176. doi: 10.1007/BF00280214. [DOI] [PubMed] [Google Scholar]
  15. Shelly L. L., Lei K. J., Pan C. J., Sakata S. F., Ruppert S., Schutz G., Chou J. Y. Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1A. J Biol Chem. 1993 Oct 15;268(29):21482–21485. [PubMed] [Google Scholar]
  16. Simons B. H., Barnett P., Vollenbroek E. G., Dekker H. L., Muijsers A. O., Messerschmidt A., Wever R. Primary structure and characterization of the vanadium chloroperoxidase from the fungus Curvularia inaequalis. Eur J Biochem. 1995 Apr 15;229(2):566–574. doi: 10.1111/j.1432-1033.1995.tb20499.x. [DOI] [PubMed] [Google Scholar]
  17. Singh J., Nordlie R. C., Jorgenson R. A. Vanadate: a potent inhibitor of multifunctional glucose-6-phosphatase. Biochim Biophys Acta. 1981 Dec 18;678(3):477–482. doi: 10.1016/0304-4165(81)90129-x. [DOI] [PubMed] [Google Scholar]
  18. Thaller M. C., Berlutti F., Schippa S., Lombardi G., Rossolini G. M. Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology. 1994 Jun;140(Pt 6):1341–1350. doi: 10.1099/00221287-140-6-1341. [DOI] [PubMed] [Google Scholar]
  19. Vincent J. B., Crowder M. W., Averill B. A. Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem Sci. 1992 Mar;17(3):105–110. doi: 10.1016/0968-0004(92)90246-6. [DOI] [PubMed] [Google Scholar]
  20. Zhuo S., Clemens J. C., Stone R. L., Dixon J. E. Mutational analysis of a Ser/Thr phosphatase. Identification of residues important in phosphoesterase substrate binding and catalysis. J Biol Chem. 1994 Oct 21;269(42):26234–26238. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES