Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Feb;6(2):444–449. doi: 10.1002/pro.5560060222

Expression, purification from inclusion bodies, and crystal characterization of a transition state analog complex of arginine kinase: a model for studying phosphagen kinases.

G Zhou 1, G Parthasarathy 1, T Somasundaram 1, A Ables 1, L Roy 1, S J Strong 1, W R Ellington 1, M S Chapman 1
PMCID: PMC2143656  PMID: 9041648

Abstract

Phosphagen kinases catalyze the reversible transfer of a phosphoryl group between guanidino phosphate compounds and ADP, thereby regenerating ATP during bursts of cellular activity. Large quantities of highly pure arginine kinase (EC 2.7.3.3), the phosphagen kinase present in arthropods, have been isolated from E. coli, into which the cDNA for the horseshoe crab enzyme had been cloned. Purification involves size exclusion and anion exchange chromatographies applied in the denatured and refolded states. The recombinant enzyme has been crystallized as a transition state analog complex. Near complete native diffraction data have been collected to 1.86 A resolution. Substitution of a recombinant source for a natural one, improvement in the purification, and data collection at cryo temperatures have all yielded significant improvements in diffraction.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berthou J., Rérat C., Rérat B., Gadet A., Fourme R., Renaud M., Dubord C., PPRADEL L. A., Roustan C. Preliminary x-ray diffraction studies on lobster ATP: L-arginine phosphotransferase. J Mol Biol. 1975 Jun 25;95(2):331–333. doi: 10.1016/0022-2836(75)90399-x. [DOI] [PubMed] [Google Scholar]
  2. Blow D. M., Chayen N. E., Lloyd L. F., Saridakis E. Control of nucleation of protein crystals. Protein Sci. 1994 Oct;3(10):1638–1643. doi: 10.1002/pro.5560031003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burgess A. N., Liddell J. M., Cook W., Tweedlie R. M., Swan I. D. Creatine kinase. A new crystal form providing evidence of subunit structural homogeneity. J Mol Biol. 1978 Aug 25;123(4):691–695. doi: 10.1016/0022-2836(78)90213-9. [DOI] [PubMed] [Google Scholar]
  4. Dumas C., Camonis J. Cloning and sequence analysis of the cDNA for arginine kinase of lobster muscle. J Biol Chem. 1993 Oct 15;268(29):21599–21605. [PubMed] [Google Scholar]
  5. Engelborghs Y., Marsh A., Gutfreund H. A quenched-flow study of the reaction catalysed by creatine kinase. Biochem J. 1975 Oct;151(1):47–50. doi: 10.1042/bj1510047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. France R. M., Grossman S. H. Denaturation and urea gradient gel electrophoresis of arginine kinase: evidence for a collapsed-state conformation. Arch Biochem Biophys. 1996 Feb 1;326(1):93–99. doi: 10.1006/abbi.1996.0051. [DOI] [PubMed] [Google Scholar]
  7. Fritz-Wolf K., Schnyder T., Wallimann T., Kabsch W. Structure of mitochondrial creatine kinase. Nature. 1996 May 23;381(6580):341–345. doi: 10.1038/381341a0. [DOI] [PubMed] [Google Scholar]
  8. Gilliland G. L., Sjölin L., Olsson G. Crystallization and preliminary X-ray diffraction data of two crystal forms of bovine heart creatine kinase. J Mol Biol. 1983 Nov 5;170(3):791–793. doi: 10.1016/s0022-2836(83)80132-6. [DOI] [PubMed] [Google Scholar]
  9. Gross M., Furter-Graves E. M., Wallimann T., Eppenberger H. M., Furter R. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation. Protein Sci. 1994 Jul;3(7):1058–1068. doi: 10.1002/pro.5560030708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hansen D. E., Knowles J. R. The stereochemical course of the reaction catalyzed by creatine kinase. J Biol Chem. 1981 Jun 25;256(12):5967–5969. [PubMed] [Google Scholar]
  11. Hershenson S., Helmers N., Desmueles P., Stroud R. Purification and crystallization of creatine kinase from rabbit skeletal muscle. J Biol Chem. 1986 Mar 15;261(8):3732–3736. [PubMed] [Google Scholar]
  12. Kenyon G. L., Reed G. H. Creatine kinase: structure-activity relationships. Adv Enzymol Relat Areas Mol Biol. 1983;54:367–426. doi: 10.1002/9780470122990.ch6. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lolis E., Petsko G. A. Transition-state analogues in protein crystallography: probes of the structural source of enzyme catalysis. Annu Rev Biochem. 1990;59:597–630. doi: 10.1146/annurev.bi.59.070190.003121. [DOI] [PubMed] [Google Scholar]
  15. Lui N. S., Cunningham L. Cooperative effects of substrates and substrate analogs on the conformation of creatine phosphokinase. Biochemistry. 1966 Jan;5(1):144–149. doi: 10.1021/bi00865a019. [DOI] [PubMed] [Google Scholar]
  16. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  17. McPherson A., Koszelak S., Axelrod H., Day J., Williams R., Robinson L., McGrath M., Cascio D. An experiment regarding crystallization of soluble proteins in the presence of beta-octyl glucoside. J Biol Chem. 1986 Feb 5;261(4):1969–1975. [PubMed] [Google Scholar]
  18. Milner-White E. J., Watts D. C. Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. Biochem J. 1971 May;122(5):727–740. doi: 10.1042/bj1220727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mühlebach S. M., Gross M., Wirz T., Wallimann T., Perriard J. C., Wyss M. Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biochem. 1994 Apr-May;133-134:245–262. doi: 10.1007/BF01267958. [DOI] [PubMed] [Google Scholar]
  20. Rao B. D., Buttlaire D. H., Cohn M. 31P NMR studies of the arginine kinase reaction. Equilibrium constants and exchange rates at stoichiometric enzyme concentration. J Biol Chem. 1976 Nov 25;251(22):6981–6986. [PubMed] [Google Scholar]
  21. Ray W. J., Jr, Puvathingal J. M. A simple procedure for removing contaminating aldehydes and peroxides from aqueous solutions of polyethylene glycols and of nonionic detergents that are based on the polyoxyethylene linkage. Anal Biochem. 1985 May 1;146(2):307–312. doi: 10.1016/0003-2697(85)90544-5. [DOI] [PubMed] [Google Scholar]
  22. Reed G. H., Cohn M. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes. J Biol Chem. 1972 May 25;247(10):3073–3081. [PubMed] [Google Scholar]
  23. Rodgers D. W. Cryocrystallography. Structure. 1994 Dec 15;2(12):1135–1140. doi: 10.1016/s0969-2126(94)00116-2. [DOI] [PubMed] [Google Scholar]
  24. Schnyder T., Sargent D. F., Richmond T. J., Eppenberger H. M., Wallimann T. Crystallization and preliminary X-ray analysis of two different forms of mitochondrial creatine kinase from chicken cardiac muscle. J Mol Biol. 1990 Dec 20;216(4):809–812. doi: 10.1016/S0022-2836(99)80002-3. [DOI] [PubMed] [Google Scholar]
  25. Schnyder T., Winkler H., Gross H., Eppenberger H. M., Wallimann T. Crystallization of mitochondrial creatine kinase. Growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers. J Biol Chem. 1991 Mar 15;266(8):5318–5322. [PubMed] [Google Scholar]
  26. Shaw Stewart P. D., Khimasia M. Predispensed gradient matrices - a new rapid method of finding crystallization conditions. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):441–442. doi: 10.1107/S0907444993014386. [DOI] [PubMed] [Google Scholar]
  27. Strong S. J., Ellington W. R. Expression of horseshoe crab arginine kinase in Escherichia coli and site-directed mutations of the reactive cysteine peptide. Comp Biochem Physiol B Biochem Mol Biol. 1996 Apr;113(4):809–816. doi: 10.1016/0305-0491(95)02104-3. [DOI] [PubMed] [Google Scholar]
  28. Strong S. J., Ellington W. R. Isolation and sequence analysis of the gene for arginine kinase from the chelicerate arthropod, Limulus polyphemus: insights into catalytically important residues. Biochim Biophys Acta. 1995 Jan 19;1246(2):197–200. doi: 10.1016/0167-4838(94)00218-6. [DOI] [PubMed] [Google Scholar]
  29. Suzuki T., Furukohri T. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates. J Mol Biol. 1994 Apr 1;237(3):353–357. doi: 10.1006/jmbi.1994.1237. [DOI] [PubMed] [Google Scholar]
  30. Tombes R. M., Shapiro B. M. Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell. 1985 May;41(1):325–334. doi: 10.1016/0092-8674(85)90085-6. [DOI] [PubMed] [Google Scholar]
  31. Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES