Abstract
Calbindin D9k is a small, well-studied calcium-binding protein consisting of two helix-loop-helix motifs called EF-hands. The P43MG2 mutant is one of a series of mutants designed to sequentially lengthen the largely unstructured tether region between the two EF-hands (F36-S44). A lower calcium affinity for P43MG was expected on the basis of simple entropic arguments. However, this is not the case and P43MG (-97 kJ.mol-1) has a stronger calcium affinity than P43M (-93 kJ.mol-1), P43G (-95 kJ.mol-1) and even wild-type protein (-96 kJ.mol-1). An NMR study was initiated to probe the structural basis for these calcium-binding results. The 1H NMR assignments and 3JHNH alpha values of the calcium-free and calcium-bound form of P43MG calbindin D9k mutant are compared with those of P43G. These comparisons reveal that little structure is formed in the tether regions of P43MG(apo), P43G(apo) and P43G(Ca) but a helical turn (S38-K41) appears to stabilize this part of the protein structure for P43MG(Ca). Several characteristic NOEs obtained from 2D and 3D NMR experiments support this novel helix. A similar, short helix exists in the crystal structure of calcium-bound wild-type calbindin D9k-but this is the first observation in solution for wild-type calbindin D9k or any of its mutants.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akke M., Skelton N. J., Kördel J., Palmer A. G., 3rd, Chazin W. J. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry. 1993 Sep 21;32(37):9832–9844. doi: 10.1021/bi00088a039. [DOI] [PubMed] [Google Scholar]
- Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
- Brodin P., Grundström T., Hofmann T., Drakenberg T., Thulin E., Forsén S. Expression of bovine intestinal calcium binding protein from a synthetic gene in Escherichia coli and characterization of the product. Biochemistry. 1986 Sep 23;25(19):5371–5377. doi: 10.1021/bi00367a004. [DOI] [PubMed] [Google Scholar]
- Carlström G., Chazin W. J. Two-dimensional 1H nuclear magnetic resonance studies of the half-saturated (Ca2+)1 state of calbindin D9k. Further implications for the molecular basis of cooperative Ca2+ binding. J Mol Biol. 1993 May 20;231(2):415–430. doi: 10.1006/jmbi.1993.1291. [DOI] [PubMed] [Google Scholar]
- Chazin W. J., Kördel J., Thulin E., Hofmann T., Drakenberg T., Forsén S. Identification of an isoaspartyl linkage formed upon deamidation of bovine calbindin D9k and structural characterization by 2D 1H NMR. Biochemistry. 1989 Oct 17;28(21):8646–8653. doi: 10.1021/bi00447a055. [DOI] [PubMed] [Google Scholar]
- Cheung W. T., Richards D. E., Rogers J. H. Calcium binding by chick calretinin and rat calbindin D28k synthesised in bacteria. Eur J Biochem. 1993 Jul 15;215(2):401–410. doi: 10.1111/j.1432-1033.1993.tb18047.x. [DOI] [PubMed] [Google Scholar]
- Cook W. J., Jeffrey L. C., Cox J. A., Vijay-Kumar S. Structure of a sarcoplasmic calcium-binding protein from amphioxus refined at 2.4 A resolution. J Mol Biol. 1993 Jan 20;229(2):461–471. doi: 10.1006/jmbi.1993.1046. [DOI] [PubMed] [Google Scholar]
- Drohat A. C., Amburgey J. C., Abildgaard F., Starich M. R., Baldisseri D., Weber D. J. Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy. Biochemistry. 1996 Sep 10;35(36):11577–11588. doi: 10.1021/bi9612226. [DOI] [PubMed] [Google Scholar]
- Finn B. E., Evenäs J., Drakenberg T., Waltho J. P., Thulin E., Forsén S. Calcium-induced structural changes and domain autonomy in calmodulin. Nat Struct Biol. 1995 Sep;2(9):777–783. doi: 10.1038/nsb0995-777. [DOI] [PubMed] [Google Scholar]
- Flaherty K. M., Zozulya S., Stryer L., McKay D. B. Three-dimensional structure of recoverin, a calcium sensor in vision. Cell. 1993 Nov 19;75(4):709–716. doi: 10.1016/0092-8674(93)90491-8. [DOI] [PubMed] [Google Scholar]
- Fullmer C. S., Wasserman R. H. Chicken intestinal 28-kilodalton calbindin-D: complete amino acid sequence and structural considerations. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4772–4776. doi: 10.1073/pnas.84.14.4772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci. 1996 Jan;21(1):14–17. [PubMed] [Google Scholar]
- Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
- Isobe T., Okuyama T. The amino-acid sequence of S-100 protein (PAP I-b protein) and its relation to the calcium-binding proteins. Eur J Biochem. 1978 Sep 1;89(2):379–388. doi: 10.1111/j.1432-1033.1978.tb12539.x. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
- Kördel J., Forsén S., Chazin W. J. 1H NMR sequential resonance assignments, secondary structure, and global fold in solution of the major (trans-Pro43) form of bovine calbindin D9k. Biochemistry. 1989 Aug 22;28(17):7065–7074. doi: 10.1021/bi00443a043. [DOI] [PubMed] [Google Scholar]
- Kördel J., Forsén S., Drakenberg T., Chazin W. J. The rate and structural consequences of proline cis-trans isomerization in calbindin D9k: NMR studies of the minor (cis-Pro43) isoform and the Pro43Gly mutant. Biochemistry. 1990 May 8;29(18):4400–4409. doi: 10.1021/bi00470a020. [DOI] [PubMed] [Google Scholar]
- Kördel J., Skelton N. J., Akke M., Chazin W. J. High-resolution structure of calcium-loaded calbindin D9k. J Mol Biol. 1993 Jun 5;231(3):711–734. doi: 10.1006/jmbi.1993.1322. [DOI] [PubMed] [Google Scholar]
- Kördel J., Skelton N. J., Akke M., Palmer A. G., 3rd, Chazin W. J. Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Biochemistry. 1992 May 26;31(20):4856–4866. doi: 10.1021/bi00135a017. [DOI] [PubMed] [Google Scholar]
- Linse S., Brodin P., Drakenberg T., Thulin E., Sellers P., Elmdén K., Grundström T., Forsén S. Structure-function relationships in EF-hand Ca2+-binding proteins. Protein engineering and biophysical studies of calbindin D9k. Biochemistry. 1987 Oct 20;26(21):6723–6735. doi: 10.1021/bi00395a023. [DOI] [PubMed] [Google Scholar]
- Linse S., Brodin P., Johansson C., Thulin E., Grundström T., Forsén S. The role of protein surface charges in ion binding. Nature. 1988 Oct 13;335(6191):651–652. doi: 10.1038/335651a0. [DOI] [PubMed] [Google Scholar]
- Linse S., Johansson C., Brodin P., Grundström T., Drakenberg T., Forsén S. Electrostatic contributions to the binding of Ca2+ in calbindin D9k. Biochemistry. 1991 Jan 8;30(1):154–162. doi: 10.1021/bi00215a023. [DOI] [PubMed] [Google Scholar]
- Linse S., Thulin E., Sellers P. Disulfide bonds in homo- and heterodimers of EF-hand subdomains of calbindin D9k: stability, calcium binding, and NMR studies. Protein Sci. 1993 Jun;2(6):985–1000. doi: 10.1002/pro.5560020612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
- Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
- Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
- Neuhaus D., Wagner G., Vasák M., Kägi J. H., Wüthrich K. Systematic application of high-resolution, phase-sensitive two-dimensional 1H-NMR techniques for the identification of the amino-acid-proton spin systems in proteins. Rabbit metallothionein-2. Eur J Biochem. 1985 Sep 2;151(2):257–273. doi: 10.1111/j.1432-1033.1985.tb09096.x. [DOI] [PubMed] [Google Scholar]
- O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
- Skelton N. J., Akke M., Kördel J., Thulin E., Forsén S., Chazin W. J. 15N NMR assignments and chemical shift analysis of uniformly labeled 15N calbindin D9k in the apo, (Cd2+)1 and (Ca2+)2 states. FEBS Lett. 1992 Jun 1;303(2-3):136–140. doi: 10.1016/0014-5793(92)80505-b. [DOI] [PubMed] [Google Scholar]
- Skelton N. J., Kördel J., Chazin W. J. Determination of the solution structure of Apo calbindin D9k by NMR spectroscopy. J Mol Biol. 1995 Jun 2;249(2):441–462. doi: 10.1006/jmbi.1995.0308. [DOI] [PubMed] [Google Scholar]
- Skelton N. J., Kördel J., Forsén S., Chazin W. J. Comparative structural analysis of the calcium free and bound states of the calcium regulatory protein calbindin D9K. J Mol Biol. 1990 Jun 20;213(4):593–598. doi: 10.1016/s0022-2836(05)80244-x. [DOI] [PubMed] [Google Scholar]
- Svensson L. A., Thulin E., Forsén S. Proline cis-trans isomers in calbindin D9k observed by X-ray crystallography. J Mol Biol. 1992 Feb 5;223(3):601–606. doi: 10.1016/0022-2836(92)90976-q. [DOI] [PubMed] [Google Scholar]
- Swindells M. B., Ikura M. Pre-formation of the semi-open conformation by the apo-calmodulin C-terminal domain and implications binding IQ-motifs. Nat Struct Biol. 1996 Jun;3(6):501–504. doi: 10.1038/nsb0696-501. [DOI] [PubMed] [Google Scholar]
- Szebenyi D. M., Moffat K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem. 1986 Jul 5;261(19):8761–8777. [PubMed] [Google Scholar]
- Tanaka T., Ames J. B., Harvey T. S., Stryer L., Ikura M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature. 1995 Aug 3;376(6539):444–447. doi: 10.1038/376444a0. [DOI] [PubMed] [Google Scholar]
- Vijay-Kumar S., Cook W. J. Structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor refined at 2.0 A resolution. J Mol Biol. 1992 Mar 20;224(2):413–426. doi: 10.1016/0022-2836(92)91004-9. [DOI] [PubMed] [Google Scholar]
- Wimberly B., Thulin E., Chazin W. J. Characterization of the N-terminal half-saturated state of calbindin D9k: NMR studies of the N56A mutant. Protein Sci. 1995 Jun;4(6):1045–1055. doi: 10.1002/pro.5560040603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
- Zhang O., Kay L. E., Olivier J. P., Forman-Kay J. D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR. 1994 Nov;4(6):845–858. doi: 10.1007/BF00398413. [DOI] [PubMed] [Google Scholar]