Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Mar;6(3):569–579. doi: 10.1002/pro.5560060306

Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface.

F W Herberg 1, B Zimmermann 1, M McGlone 1, S S Taylor 1
PMCID: PMC2143671  PMID: 9070439

Abstract

All eukaryotic protein kinases share a conserved catalytic core. In the catalytic (C) subunit of cAMP-dependent protein kinase (cAPK) this core is preceded by a myristylation motif followed by a long helix with Trp 30 at the end of this A-helix filling a hydrophobic cavity between the two lobes of the core. To understand the importance of the A-helix, the myristylation motif (delta 1-14) as well as the entire N-terminal segment (delta 1 -39) were deleted. In addition, Trp 30 was replaced with both Tyr and Ala. All proteins were overexpressed in E. coli and purified to homogeneity. rC(delta 1-14), rC(W30Y), and rC(W30A) all had reduced thermostability, but were catalytically indistinguishable from wild-type C. Based on Surface Plasmon Resonance, all three also formed stable holoenzyme complexes with the RI-subunit, although the appKds were reduced by more than 10-fold due to decrease in the association rate. Surprisingly, however, the holoenzymes were even more thermostable than wild-type holoenzyme. To obtain active enzyme, it was necessary to purify rC(delta 1-39) as a fusion protein with glutathione-S-transferase (GST-rC(delta 1-39), although its thermostability (Tm) was decreased by 12.5 degrees C, was catalytically similar to wild-type C and was inhibited by both the type I and II R-subunits and the heat-stable protein kinase inhibitor (PKI). The Tm for holoenzyme II formed with GST-rC(delta 1-39) was 16.5 degrees C greater than the Tm for free GST-rC(delta 1-39), and the Ka(cAMP) was increased nearly 10-fold. These mutants point out striking and unanticipated differences in how the RI and RII subunits associate with the C-subunit to form a stable holoenzyme and indicate, furthermore, that this N-terminal segment, far from the active site cleft, influences those interactions. The importance of the A-helix and Trp 30 for stability correlates with its location at the cleft interface where it orients the C-helix in the small lobe and the activation loop in the large so that these subdomains are aligned in a way that allows for correct configuration of residues at the active site. This extensive network of contacts that links the A-helix directly to the active site in cAPK is compared to other kinases whose crystal structures have been solved.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. A., McGlone M. L., Gibson R., Taylor S. S. Phosphorylation modulates catalytic function and regulation in the cAMP-dependent protein kinase. Biochemistry. 1995 Feb 28;34(8):2447–2454. doi: 10.1021/bi00008a007. [DOI] [PubMed] [Google Scholar]
  2. Barker W. C., Dayhoff M. O. Viral src gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1982 May;79(9):2836–2839. doi: 10.1073/pnas.79.9.2836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Bubis J., Neitzel J. J., Saraswat L. D., Taylor S. S. A point mutation abolishes binding of cAMP to site A in the regulatory subunit of cAMP-dependent protein kinase. J Biol Chem. 1988 Jul 15;263(20):9668–9673. [PubMed] [Google Scholar]
  5. Buechler Y. J., Herberg F. W., Taylor S. S. Regulation-defective mutants of type I cAMP-dependent protein kinase. Consequences of replacing arginine 94 and arginine 95. J Biol Chem. 1993 Aug 5;268(22):16495–16503. [PubMed] [Google Scholar]
  6. Chestukhin A., Litovchick L., Schourov D., Cox S., Taylor S. S., Shaltiel S. Functional malleability of the carboxyl-terminal tail in protein kinase A. J Biol Chem. 1996 Apr 26;271(17):10175–10182. doi: 10.1074/jbc.271.17.10175. [DOI] [PubMed] [Google Scholar]
  7. Cook P. F., Neville M. E., Jr, Vrana K. E., Hartl F. T., Roskoski R., Jr Adenosine cyclic 3',5'-monophosphate dependent protein kinase: kinetic mechanism for the bovine skeletal muscle catalytic subunit. Biochemistry. 1982 Nov 9;21(23):5794–5799. doi: 10.1021/bi00266a011. [DOI] [PubMed] [Google Scholar]
  8. De Bondt H. L., Rosenblatt J., Jancarik J., Jones H. D., Morgan D. O., Kim S. H. Crystal structure of cyclin-dependent kinase 2. Nature. 1993 Jun 17;363(6430):595–602. doi: 10.1038/363595a0. [DOI] [PubMed] [Google Scholar]
  9. Engel K., Schultz H., Martin F., Kotlyarov A., Plath K., Hahn M., Heinemann U., Gaestel M. Constitutive activation of mitogen-activated protein kinase-activated protein kinase 2 by mutation of phosphorylation sites and an A-helix motif. J Biol Chem. 1995 Nov 10;270(45):27213–27221. doi: 10.1074/jbc.270.45.27213. [DOI] [PubMed] [Google Scholar]
  10. Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
  11. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  12. Hanks S. K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995 May;9(8):576–596. [PubMed] [Google Scholar]
  13. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  14. Herberg F. W., Bell S. M., Taylor S. S. Expression of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli: multiple isozymes reflect different phosphorylation states. Protein Eng. 1993 Sep;6(7):771–777. doi: 10.1093/protein/6.7.771. [DOI] [PubMed] [Google Scholar]
  15. Herberg F. W., Dostmann W. R., Zorn M., Davis S. J., Taylor S. S. Crosstalk between domains in the regulatory subunit of cAMP-dependent protein kinase: influence of amino terminus on cAMP binding and holoenzyme formation. Biochemistry. 1994 Jun 14;33(23):7485–7494. doi: 10.1021/bi00189a057. [DOI] [PubMed] [Google Scholar]
  16. Herberg F. W., Taylor S. S., Dostmann W. R. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Biochemistry. 1996 Mar 5;35(9):2934–2942. doi: 10.1021/bi951647c. [DOI] [PubMed] [Google Scholar]
  17. Herberg F. W., Taylor S. S. Physiological inhibitors of the catalytic subunit of cAMP-dependent protein kinase: effect of MgATP on protein-protein interactions. Biochemistry. 1993 Dec 21;32(50):14015–14022. doi: 10.1021/bi00213a035. [DOI] [PubMed] [Google Scholar]
  18. Hu S. H., Parker M. W., Lei J. Y., Wilce M. C., Benian G. M., Kemp B. E. Insights into autoregulation from the crystal structure of twitchin kinase. Nature. 1994 Jun 16;369(6481):581–584. doi: 10.1038/369581a0. [DOI] [PubMed] [Google Scholar]
  19. Hubbard S. R., Wei L., Ellis L., Hendrickson W. A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature. 1994 Dec 22;372(6508):746–754. doi: 10.1038/372746a0. [DOI] [PubMed] [Google Scholar]
  20. Jeffrey P. D., Russo A. A., Polyak K., Gibbs E., Hurwitz J., Massagué J., Pavletich N. P. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature. 1995 Jul 27;376(6538):313–320. doi: 10.1038/376313a0. [DOI] [PubMed] [Google Scholar]
  21. Johnson L. N., Noble M. E., Owen D. J. Active and inactive protein kinases: structural basis for regulation. Cell. 1996 Apr 19;85(2):149–158. doi: 10.1016/s0092-8674(00)81092-2. [DOI] [PubMed] [Google Scholar]
  22. Knighton D. R., Zheng J. H., Ten Eyck L. F., Ashford V. A., Xuong N. H., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):407–414. doi: 10.1126/science.1862342. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Longenecker K. L., Roach P. J., Hurley T. D. Three-dimensional structure of mammalian casein kinase I: molecular basis for phosphate recognition. J Mol Biol. 1996 Apr 5;257(3):618–631. doi: 10.1006/jmbi.1996.0189. [DOI] [PubMed] [Google Scholar]
  25. Mansour S. J., Matten W. T., Hermann A. S., Candia J. M., Rong S., Fukasawa K., Vande Woude G. F., Ahn N. G. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science. 1994 Aug 12;265(5174):966–970. doi: 10.1126/science.8052857. [DOI] [PubMed] [Google Scholar]
  26. Owen D. J., Noble M. E., Garman E. F., Papageorgiou A. C., Johnson L. N. Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Structure. 1995 May 15;3(5):467–482. doi: 10.1016/s0969-2126(01)00180-0. [DOI] [PubMed] [Google Scholar]
  27. Radzio-Andzelm E., Lew J., Taylor S. Bound to activate: conformational consequences of cyclin binding to CDK2. Structure. 1995 Nov 15;3(11):1135–1141. doi: 10.1016/s0969-2126(01)00249-0. [DOI] [PubMed] [Google Scholar]
  28. Saraswat L. D., Filutowicz M., Taylor S. S. Expression of the type I regulatory subunit of cAMP-dependent protein kinase in Escherichia coli. J Biol Chem. 1986 Aug 25;261(24):11091–11096. [PubMed] [Google Scholar]
  29. Slice L. W., Taylor S. S. Expression of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli. J Biol Chem. 1989 Dec 15;264(35):20940–20946. [PubMed] [Google Scholar]
  30. Taylor S. S., Buechler J. A., Slice L. W., Knighton D. K., Durgerian S., Ringheim G. E., Neitzel J. J., Yonemoto W. M., Sowadski J. M., Dospmann W. cAMP-dependent protein kinase: a framework for a diverse family of enzymes. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 1):121–130. doi: 10.1101/sqb.1988.053.01.018. [DOI] [PubMed] [Google Scholar]
  31. Taylor S. S., Radzio-Andzelm E. Three protein kinase structures define a common motif. Structure. 1994 May 15;2(5):345–355. doi: 10.1016/s0969-2126(00)00036-8. [DOI] [PubMed] [Google Scholar]
  32. Uhler M. D., Carmichael D. F., Lee D. C., Chrivia J. C., Krebs E. G., McKnight G. S. Isolation of cDNA clones coding for the catalytic subunit of mouse cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1300–1304. doi: 10.1073/pnas.83.5.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Veron M., Radzio-Andzelm E., Tsigelny I., Ten Eyck L. F., Taylor S. S. A conserved helix motif complements the protein kinase core. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10618–10622. doi: 10.1073/pnas.90.22.10618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Xu R. M., Carmel G., Sweet R. M., Kuret J., Cheng X. Crystal structure of casein kinase-1, a phosphate-directed protein kinase. EMBO J. 1995 Mar 1;14(5):1015–1023. doi: 10.1002/j.1460-2075.1995.tb07082.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yonemoto W., McGlone M. L., Taylor S. S. N-myristylation of the catalytic subunit of cAMP-dependent protein kinase conveys structural stability. J Biol Chem. 1993 Feb 5;268(4):2348–2352. [PubMed] [Google Scholar]
  36. Zheng J., Knighton D. R., Xuong N. H., Taylor S. S., Sowadski J. M., Ten Eyck L. F. Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Sci. 1993 Oct;2(10):1559–1573. doi: 10.1002/pro.5560021003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES