Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Mar;6(3):543–555. doi: 10.1002/pro.5560060304

A proposed architecture for the central domain of the bacterial enhancer-binding proteins based on secondary structure prediction and fold recognition.

J Osuna 1, X Soberón 1, E Morett 1
PMCID: PMC2143673  PMID: 9070437

Abstract

The expression of genes transcribed by the RNA polymerase with the alternative sigma factor sigma 54 (E sigma 54) is absolutely dependent on activator proteins that bind to enhancer-like sites, located far upstream from the promoter. These unique prokaryotic proteins, known as enhancer-binding proteins (EBP), mediate open promoter complex formation in a reaction dependent on NTP hydrolysis. The best characterized proteins of this family of regulators are NtrC and NifA, which activate genes required for ammonia assimilation and nitrogen fixation, respectively. In a recent IRBM course (@ontiers of protein structure prediction," IRBM, Pomezia, Italy, 1995; see web site http://www.mrc-cpe.cam.uk/irbm-course95/), one of us (J.O.) participated in the elaboration of the proposal that the Central domain of the EBPs might adopt the classical mononucleotide-binding fold. This suggestion was based on the results of a new protein fold recognition algorithm (Map) and in the mapping of correlated mutations calculated for the sequence family on the same mononucleotide-binding fold topology. In this work, we present new data that support the previous conclusion. The results from a number of different secondary structure prediction programs suggest that the Central domain could adopt an alpha/beta topology. The fold recognition programs ProFIT 0.9, 3D PROFILE combined with secondary structure prediction, and 123D suggest a mononucleotide-binding fold topology for the Central domain amino acid sequence. Finally, and most importantly, three of five reported residue alterations that impair the Central domain. ATPase activity of the E sigma 54 activators are mapped to polypeptide regions that might be playing equivalent roles as those involved in nucleotide-binding in the mononucleotide-binding proteins. Furthermore, the known residue substitution that alter the function of the E sigma 54 activators, leaving intact the Central domain ATPase activity, are mapped on region proposed to play an equivalent role as the effector region of the GTPase superfamily.

Full Text

The Full Text of this article is available as a PDF (15.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrov N. N., Nussinov R., Zimmer R. M. Fast protein fold recognition via sequence to structure alignment and contact capacity potentials. Pac Symp Biocomput. 1996:53–72. [PubMed] [Google Scholar]
  2. Austin S., Buck M., Cannon W., Eydmann T., Dixon R. Purification and in vitro activities of the native nitrogen fixation control proteins NifA and NifL. J Bacteriol. 1994 Jun;176(12):3460–3465. doi: 10.1128/jb.176.12.3460-3465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Austin S., Dixon R. The prokaryotic enhancer binding protein NTRC has an ATPase activity which is phosphorylation and DNA dependent. EMBO J. 1992 Jun;11(6):2219–2228. doi: 10.1002/j.1460-2075.1992.tb05281.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Austin S., Kundrot C., Dixon R. Influence of a mutation in the putative nucleotide binding site of the nitrogen regulatory protein NTRC on its positive control function. Nucleic Acids Res. 1991 May 11;19(9):2281–2287. doi: 10.1093/nar/19.9.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bairoch A., Boeckmann B. The SWISS-PROT protein sequence data bank: current status. Nucleic Acids Res. 1994 Sep;22(17):3578–3580. [PMC free article] [PubMed] [Google Scholar]
  6. Berchtold H., Reshetnikova L., Reiser C. O., Schirmer N. K., Sprinzl M., Hilgenfeld R. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature. 1993 Sep 9;365(6442):126–132. doi: 10.1038/365126a0. [DOI] [PubMed] [Google Scholar]
  7. Berger D. K., Narberhaus F., Kustu S. The isolated catalytic domain of NIFA, a bacterial enhancer-binding protein, activates transcription in vitro: activation is inhibited by NIFL. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):103–107. doi: 10.1073/pnas.91.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berger D. K., Narberhaus F., Lee H. S., Kustu S. In vitro studies of the domains of the nitrogen fixation regulatory protein NIFA. J Bacteriol. 1995 Jan;177(1):191–199. doi: 10.1128/jb.177.1.191-199.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buck M., Cannon W. Specific binding of the transcription factor sigma-54 to promoter DNA. Nature. 1992 Jul 30;358(6385):422–424. doi: 10.1038/358422a0. [DOI] [PubMed] [Google Scholar]
  10. Cannon W., Austin S., Moore M., Buck M. Identification of close contacts between the sigma N (sigma 54) protein and promoter DNA in closed promoter complexes. Nucleic Acids Res. 1995 Feb 11;23(3):351–356. doi: 10.1093/nar/23.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deléage G., Roux B. An algorithm for protein secondary structure prediction based on class prediction. Protein Eng. 1987 Aug-Sep;1(4):289–294. doi: 10.1093/protein/1.4.289. [DOI] [PubMed] [Google Scholar]
  12. Edwards Y. J., Perkins S. J. The protein fold of the von Willebrand factor type A domain is predicted to be similar to the open twisted beta-sheet flanked by alpha-helices found in human ras-p21. FEBS Lett. 1995 Jan 30;358(3):283–286. doi: 10.1016/0014-5793(94)01447-9. [DOI] [PubMed] [Google Scholar]
  13. Fischer D., Eisenberg D. Protein fold recognition using sequence-derived predictions. Protein Sci. 1996 May;5(5):947–955. doi: 10.1002/pro.5560050516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fischer H. M., Bruderer T., Hennecke H. Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. Nucleic Acids Res. 1988 Mar 25;16(5):2207–2224. doi: 10.1093/nar/16.5.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Flashner Y., Weiss D. S., Keener J., Kustu S. Constitutive forms of the enhancer-binding protein NtrC: evidence that essential oligomerization determinants lie in the central activation domain. J Mol Biol. 1995 Jun 16;249(4):700–713. doi: 10.1006/jmbi.1995.0330. [DOI] [PubMed] [Google Scholar]
  16. Göbel U., Sander C., Schneider R., Valencia A. Correlated mutations and residue contacts in proteins. Proteins. 1994 Apr;18(4):309–317. doi: 10.1002/prot.340180402. [DOI] [PubMed] [Google Scholar]
  17. Hilgenfeld R. Regulatory GTPases. Curr Opin Struct Biol. 1995 Dec;5(6):810–817. doi: 10.1016/0959-440x(95)80015-8. [DOI] [PubMed] [Google Scholar]
  18. Huala E., Ausubel F. M. The central domain of Rhizobium meliloti NifA is sufficient to activate transcription from the R. meliloti nifH promoter. J Bacteriol. 1989 Jun;171(6):3354–3365. doi: 10.1128/jb.171.6.3354-3365.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jiang Y., Gralla J. D. Nucleotide requirements for activated RNA polymerase II open complex formation in vitro. J Biol Chem. 1995 Jan 20;270(3):1277–1281. doi: 10.1074/jbc.270.3.1277. [DOI] [PubMed] [Google Scholar]
  20. Jiang Y., Smale S. T., Gralla J. D. A common ATP requirement for open complex formation and transcription at promoters containing initiator or TATA elements. J Biol Chem. 1993 Mar 25;268(9):6535–6540. [PubMed] [Google Scholar]
  21. Kim Y. C., Grable J. C., Love R., Greene P. J., Rosenberg J. M. Refinement of Eco RI endonuclease crystal structure: a revised protein chain tracing. Science. 1990 Sep 14;249(4974):1307–1309. doi: 10.1126/science.2399465. [DOI] [PubMed] [Google Scholar]
  22. Krey R., Pühler A., Klipp W. A defined amino acid exchange close to the putative nucleotide binding site is responsible for an oxygen-tolerant variant of the Rhizobium meliloti NifA protein. Mol Gen Genet. 1992 Sep;234(3):433–441. doi: 10.1007/BF00538703. [DOI] [PubMed] [Google Scholar]
  23. Kustu S., Santero E., Keener J., Popham D., Weiss D. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev. 1989 Sep;53(3):367–376. doi: 10.1128/mr.53.3.367-376.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lambright D. G., Sondek J., Bohm A., Skiba N. P., Hamm H. E., Sigler P. B. The 2.0 A crystal structure of a heterotrimeric G protein. Nature. 1996 Jan 25;379(6563):311–319. doi: 10.1038/379311a0. [DOI] [PubMed] [Google Scholar]
  25. Lee H. S., Berger D. K., Kustu S. Activity of purified NIFA, a transcriptional activator of nitrogen fixation genes. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2266–2270. doi: 10.1073/pnas.90.6.2266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee J. H., Hoover T. R. Protein crosslinking studies suggest that Rhizobium meliloti C4-dicarboxylic acid transport protein D, a sigma 54-dependent transcriptional activator, interacts with sigma 54 and the beta subunit of RNA polymerase. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9702–9706. doi: 10.1073/pnas.92.21.9702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Levin J. M., Robson B., Garnier J. An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett. 1986 Sep 15;205(2):303–308. doi: 10.1016/0014-5793(86)80917-6. [DOI] [PubMed] [Google Scholar]
  28. Mehta P. K., Heringa J., Argos P. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%. Protein Sci. 1995 Dec;4(12):2517–2525. doi: 10.1002/pro.5560041208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morett E., Cannon W., Buck M. The DNA-binding domain of the transcriptional activator protein NifA resides in its carboxy terminus, recognises the upstream activator sequences of nif promoters and can be separated from the positive control function of NifA. Nucleic Acids Res. 1988 Dec 23;16(24):11469–11488. doi: 10.1093/nar/16.24.11469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  31. Nassar N., Horn G., Herrmann C., Scherer A., McCormick F., Wittinghofer A. The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature. 1995 Jun 15;375(6532):554–560. doi: 10.1038/375554a0. [DOI] [PubMed] [Google Scholar]
  32. Newman M., Strzelecka T., Dorner L. F., Schildkraut I., Aggarwal A. K. Structure of restriction endonuclease bamhi phased at 1.95 A resolution by MAD analysis. Structure. 1994 May 15;2(5):439–452. doi: 10.1016/s0969-2126(00)00045-9. [DOI] [PubMed] [Google Scholar]
  33. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B. F., Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995 Dec 1;270(5241):1464–1472. doi: 10.1126/science.270.5241.1464. [DOI] [PubMed] [Google Scholar]
  34. Pao G. M., Saier M. H., Jr Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol. 1995 Feb;40(2):136–154. doi: 10.1007/BF00167109. [DOI] [PubMed] [Google Scholar]
  35. Russell R. B., Copley R. R., Barton G. J. Protein fold recognition by mapping predicted secondary structures. J Mol Biol. 1996 Jun 14;259(3):349–365. doi: 10.1006/jmbi.1996.0325. [DOI] [PubMed] [Google Scholar]
  36. Sasse-Dwight S., Gralla J. D. Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor sigma 54. Cell. 1990 Sep 7;62(5):945–954. doi: 10.1016/0092-8674(90)90269-k. [DOI] [PubMed] [Google Scholar]
  37. Shingler V., Pavel H. Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. Mol Microbiol. 1995 Aug;17(3):505–513. doi: 10.1111/j.1365-2958.1995.mmi_17030505.x. [DOI] [PubMed] [Google Scholar]
  38. Solovyev V. V., Salamov A. A. Predicting alpha-helix and beta-strand segments of globular proteins. Comput Appl Biosci. 1994 Dec;10(6):661–669. doi: 10.1093/bioinformatics/10.6.661. [DOI] [PubMed] [Google Scholar]
  39. Stultz C. M., White J. V., Smith T. F. Structural analysis based on state-space modeling. Protein Sci. 1993 Mar;2(3):305–314. doi: 10.1002/pro.5560020302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Valencia A., Hubbard T. J., Muga A., Bañuelos S., Llorca O., Carrascosa J. L., Valpuesta J. M. Prediction of the structure of GroES and its interaction with GroEL. Proteins. 1995 Jul;22(3):199–209. doi: 10.1002/prot.340220302. [DOI] [PubMed] [Google Scholar]
  41. Venclovas C., Timinskas A., Siksnys V. Five-stranded beta-sheet sandwiched with two alpha-helices: a structural link between restriction endonucleases EcoRI and EcoRV. Proteins. 1994 Nov;20(3):279–282. doi: 10.1002/prot.340200308. [DOI] [PubMed] [Google Scholar]
  42. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wall M. A., Coleman D. E., Lee E., Iñiguez-Lluhi J. A., Posner B. A., Gilman A. G., Sprang S. R. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell. 1995 Dec 15;83(6):1047–1058. doi: 10.1016/0092-8674(95)90220-1. [DOI] [PubMed] [Google Scholar]
  44. Wang J. T., Syed A., Hsieh M., Gralla J. D. Converting Escherichia coli RNA polymerase into an enhancer-responsive enzyme: role of an NH2-terminal leucine patch in sigma 54. Science. 1995 Nov 10;270(5238):992–994. doi: 10.1126/science.270.5238.992. [DOI] [PubMed] [Google Scholar]
  45. Weiss D. S., Batut J., Klose K. E., Keener J., Kustu S. The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell. 1991 Oct 4;67(1):155–167. doi: 10.1016/0092-8674(91)90579-n. [DOI] [PubMed] [Google Scholar]
  46. Wong C., Tintut Y., Gralla J. D. The domain structure of sigma 54 as determined by analysis of a set of deletion mutants. J Mol Biol. 1994 Feb 11;236(1):81–90. doi: 10.1006/jmbi.1994.1120. [DOI] [PubMed] [Google Scholar]
  47. Yang J., Ganesan S., Sarsero J., Pittard A. J. A genetic analysis of various functions of the TyrR protein of Escherichia coli. J Bacteriol. 1993 Mar;175(6):1767–1776. doi: 10.1128/jb.175.6.1767-1776.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zvelebil M. J., Barton G. J., Taylor W. R., Sternberg M. J. Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J Mol Biol. 1987 Jun 20;195(4):957–961. doi: 10.1016/0022-2836(87)90501-8. [DOI] [PubMed] [Google Scholar]
  49. la Cour T. F., Nyborg J., Thirup S., Clark B. F. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. EMBO J. 1985 Sep;4(9):2385–2388. doi: 10.1002/j.1460-2075.1985.tb03943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES