Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Mar;6(3):556–568. doi: 10.1002/pro.5560060305

Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b.

N Elango 1, R Radhakrishnan 1, W A Froland 1, B J Wallar 1, C A Earhart 1, J D Lipscomb 1, D H Ohlendorf 1
PMCID: PMC2143674  PMID: 9070438

Abstract

Methane monooxygenase (MMO), found in aerobic methanotrophic bacteria, catalyzes the O2-dependent conversion of methane to methanol. The soluble form of the enzyme (sMMO) consists of three components: a reductase, a regulatory "B" component (MMOB), and a hydroxylase component (MMOH), which contains a hydroxo-bridged dinuclear iron cluster. Two genera of methanotrophs, termed Type X and Type II, which differ markedly in cellular and metabolic characteristics, are known to produce the sMMO. The structure of MMOH from the Type X methanotroph Methylococcus capsulatus Bath (MMO Bath) has been reported recently. Two different structures were found for the essential diiron cluster, depending upon the temperature at which the diffraction data were collected. In order to extend the structural studies to the Type II methanotrophs and to determine whether one of the two known MMOH structures is generally applicable to the MMOH family, we have determined the crystal structure of the MMOH from Type II Methylosinus trichosporium OB3b (MMO OB3b) in two crystal forms to 2.0 A resolution, respectively, both determined at 18 degrees C. The crystal forms differ in that MMOB was present during crystallization of the second form. Both crystal forms, however, yielded very similar results for the structure of the MMOH. Most of the major structural features of the MMOH Bath were also maintained with high fidelity. The two irons of the active site cluster of MMOH OB3b are bridged by two OH (or one OH and one H2O), as well as both carboxylate oxygens of Glu alpha 144. This bis-mu-hydroxo-bridged "diamond core" structure, with a short Fe-Fe distance of 2.99 A, is unique for the resting state of proteins containing analogous diiron clusters, and is very similar to the structure reported for the cluster from flash frozen (-160 degrees C) crystals of MMOH Bath, suggesting a common active site structure for the soluble MMOHs. The high-resolution structure of MMOH OB3b indicates 26 consecutive amino acid sequence differences in the beta chain when compared to the previously reported sequence inferred from the cloned gene. Fifteen additional sequence differences distributed randomly over the three chains were also observed, including D alpha 209E, a ligand of one of the irons.

Full Text

The Full Text of this article is available as a PDF (7.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cardy D. L., Laidler V., Salmond G. P., Murrell J. C. Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b. Mol Microbiol. 1991 Feb;5(2):335–342. doi: 10.1111/j.1365-2958.1991.tb02114.x. [DOI] [PubMed] [Google Scholar]
  2. Cardy D. L., Laidler V., Salmond G. P., Murrell J. C. The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene. Arch Microbiol. 1991;156(6):477–483. doi: 10.1007/BF00245395. [DOI] [PubMed] [Google Scholar]
  3. Colby J., Stirling D. I., Dalton H. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J. 1977 Aug 1;165(2):395–402. doi: 10.1042/bj1650395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  5. Fox B. G., Borneman J. G., Wackett L. P., Lipscomb J. D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry. 1990 Jul 10;29(27):6419–6427. doi: 10.1021/bi00479a013. [DOI] [PubMed] [Google Scholar]
  6. Fox B. G., Froland W. A., Dege J. E., Lipscomb J. D. Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem. 1989 Jun 15;264(17):10023–10033. [PubMed] [Google Scholar]
  7. Fox B. G., Froland W. A., Jollie D. R., Lipscomb J. D. Methane monooxygenase from Methylosinus trichosporium OB3b. Methods Enzymol. 1990;188:191–202. doi: 10.1016/0076-6879(90)88033-7. [DOI] [PubMed] [Google Scholar]
  8. Fox B. G., Liu Y., Dege J. E., Lipscomb J. D. Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b. Identification of sites of component interaction. J Biol Chem. 1991 Jan 5;266(1):540–550. [PubMed] [Google Scholar]
  9. Fox B. G., Shanklin J., Ai J., Loehr T. M., Sanders-Loehr J. Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins. Biochemistry. 1994 Nov 1;33(43):12776–12786. doi: 10.1021/bi00209a008. [DOI] [PubMed] [Google Scholar]
  10. Fox B. G., Surerus K. K., Münck E., Lipscomb J. D. Evidence for a mu-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. Mössbauer and EPR studies. J Biol Chem. 1988 Aug 5;263(22):10553–10556. [PubMed] [Google Scholar]
  11. Froland W. A., Andersson K. K., Lee S. K., Liu Y., Lipscomb J. D. Methane monooxygenase component B and reductase alter the regioselectivity of the hydroxylase component-catalyzed reactions. A novel role for protein-protein interactions in an oxygenase mechanism. J Biol Chem. 1992 Sep 5;267(25):17588–17597. [PubMed] [Google Scholar]
  12. Froland W. A., Dyer D. H., Radhakrishnan R., Earhart C. A., Lipscomb J. D., Ohlendorf D. H. Preliminary crystallographic analysis of methane mono-oxygenase hydroxylase from Methylosinus trichosporium OB3b. J Mol Biol. 1994 Feb 11;236(1):379–381. doi: 10.1006/jmbi.1994.1145. [DOI] [PubMed] [Google Scholar]
  13. Green J., Dalton H. Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J Biol Chem. 1989 Oct 25;264(30):17698–17703. [PubMed] [Google Scholar]
  14. Higgins I. J., Best D. J., Hammond R. C. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature. 1980 Aug 7;286(5773):561–564. doi: 10.1038/286561a0. [DOI] [PubMed] [Google Scholar]
  15. Imai M., Shimada H., Watanabe Y., Matsushima-Hibiya Y., Makino R., Koga H., Horiuchi T., Ishimura Y. Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7823–7827. doi: 10.1073/pnas.86.20.7823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee S. K., Nesheim J. C., Lipscomb J. D. Transient intermediates of the methane monooxygenase catalytic cycle. J Biol Chem. 1993 Oct 15;268(29):21569–21577. [PubMed] [Google Scholar]
  17. Lipscomb J. D. Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol. 1994;48:371–399. doi: 10.1146/annurev.mi.48.100194.002103. [DOI] [PubMed] [Google Scholar]
  18. Liu Y., Nesheim J. C., Lee S. K., Lipscomb J. D. Gating effects of component B on oxygen activation by the methane monooxygenase hydroxylase component. J Biol Chem. 1995 Oct 20;270(42):24662–24665. doi: 10.1074/jbc.270.42.24662. [DOI] [PubMed] [Google Scholar]
  19. Nesheim J. C., Lipscomb J. D. Large kinetic isotope effects in methane oxidation catalyzed by methane monooxygenase: evidence for C-H bond cleavage in a reaction cycle intermediate. Biochemistry. 1996 Aug 6;35(31):10240–10247. doi: 10.1021/bi960596w. [DOI] [PubMed] [Google Scholar]
  20. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  21. Nordlund P., Dalton H., Eklund H. The active site structure of methane monooxygenase is closely related to the binuclear iron center of ribonucleotide reductase. FEBS Lett. 1992 Aug 3;307(3):257–262. doi: 10.1016/0014-5793(92)80690-i. [DOI] [PubMed] [Google Scholar]
  22. Nordlund P., Sjöberg B. M., Eklund H. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature. 1990 Jun 14;345(6276):593–598. doi: 10.1038/345593a0. [DOI] [PubMed] [Google Scholar]
  23. Ohlendorf D. H. Acuracy of refined protein structures. II. Comparison of four independently refined models of human interleukin 1beta. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):808–812. doi: 10.1107/S0907444994002659. [DOI] [PubMed] [Google Scholar]
  24. Paulsen K. E., Liu Y., Fox B. G., Lipscomb J. D., Münck E., Stankovich M. T. Oxidation-reduction potentials of the methane monooxygenase hydroxylase component from Methylosinus trichosporium OB3b. Biochemistry. 1994 Jan 25;33(3):713–722. doi: 10.1021/bi00169a013. [DOI] [PubMed] [Google Scholar]
  25. Rataj M. J., Kauth J. E., Donnelly M. I. Oxidation of deuterated compounds by high specific activity methane monooxygenase from Methylosinus trichosporium. Mechanistic implications. J Biol Chem. 1991 Oct 5;266(28):18684–18690. [PubMed] [Google Scholar]
  26. Rosenzweig A. C., Frederick C. A., Lippard S. J., Nordlund P. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature. 1993 Dec 9;366(6455):537–543. doi: 10.1038/366537a0. [DOI] [PubMed] [Google Scholar]
  27. Rosenzweig A. C., Nordlund P., Takahara P. M., Frederick C. A., Lippard S. J. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Chem Biol. 1995 Jun;2(6):409–418. [PubMed] [Google Scholar]
  28. Stainthorpe A. C., Lees V., Salmond G. P., Dalton H., Murrell J. C. The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene. 1990 Jul 2;91(1):27–34. doi: 10.1016/0378-1119(90)90158-n. [DOI] [PubMed] [Google Scholar]
  29. Stainthorpe A. C., Murrell J. C., Salmond G. P., Dalton H., Lees V. Molecular analysis of methane monooxygenase from Methylococcus capsulatus (Bath). Arch Microbiol. 1989;152(2):154–159. doi: 10.1007/BF00456094. [DOI] [PubMed] [Google Scholar]
  30. Tsien H. C., Brusseau G. A., Hanson R. S., Waclett L. P. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol. 1989 Dec;55(12):3155–3161. doi: 10.1128/aem.55.12.3155-3161.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wallar Bradley J., Lipscomb John D. Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters. Chem Rev. 1996 Nov 7;96(7):2625–2658. doi: 10.1021/cr9500489. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES