Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Mar;6(3):501–523. doi: 10.1002/pro.5560060301

Subtilases: the superfamily of subtilisin-like serine proteases.

R J Siezen 1, J A Leunissen 1
PMCID: PMC2143677  PMID: 9070434

Abstract

Subtilases are members of the clan (or superfamily) of subtilisin-like serine proteases. Over 200 subtilases are presently known, more than 170 of which with their complete amino acid sequence. In this update of our previous overview (Siezen RJ, de Vos WM, Leunissen JAM, Dijkstra BW, 1991, Protein Eng 4:719-731), details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment. Based on sequence homology, a subdivision into six families is proposed. Highly conserved residues of the catalytic domain are identified, as are large or unusual deletions and insertions. Predictions have been updated for Ca(2+)-binding sites, disulfide bonds, and substrate specificity, based on both sequence alignment and three-dimensional homology modeling.

Full Text

The Full Text of this article is available as a PDF (9.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballinger M. D., Tom J., Wells J. A. Designing subtilisin BPN' to cleave substrates containing dibasic residues. Biochemistry. 1995 Oct 17;34(41):13312–13319. doi: 10.1021/bi00041a006. [DOI] [PubMed] [Google Scholar]
  2. Barr P. J. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell. 1991 Jul 12;66(1):1–3. doi: 10.1016/0092-8674(91)90129-m. [DOI] [PubMed] [Google Scholar]
  3. Barrett A. J., Rawlings N. D. Families and clans of serine peptidases. Arch Biochem Biophys. 1995 Apr 20;318(2):247–250. doi: 10.1006/abbi.1995.1227. [DOI] [PubMed] [Google Scholar]
  4. Benjannet S., Lusson J., Hamelin J., Savaria D., Chrétien M., Seidah N. G. Structure-function studies on the biosynthesis and bioactivity of the precursor convertase PC2 and the formation of the PC2/7B2 complex. FEBS Lett. 1995 Apr 3;362(2):151–155. doi: 10.1016/0014-5793(95)00228-2. [DOI] [PubMed] [Google Scholar]
  5. Berti P. J., Storer A. C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol. 1995 Feb 17;246(2):273–283. doi: 10.1006/jmbi.1994.0083. [DOI] [PubMed] [Google Scholar]
  6. Betzel C., Bellemann M., Pal G. P., Bajorath J., Saenger W., Wilson K. S. X-ray and model-building studies on the specificity of the active site of proteinase K. Proteins. 1988;4(3):157–164. doi: 10.1002/prot.340040302. [DOI] [PubMed] [Google Scholar]
  7. Booth M. C., Bogie C. P., Sahl H. G., Siezen R. J., Hatter K. L., Gilmore M. S. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol. 1996 Sep;21(6):1175–1184. doi: 10.1046/j.1365-2958.1996.831449.x. [DOI] [PubMed] [Google Scholar]
  8. Carter P., Wells J. A. Functional interaction among catalytic residues in subtilisin BPN'. Proteins. 1990;7(4):335–342. doi: 10.1002/prot.340070405. [DOI] [PubMed] [Google Scholar]
  9. Creemers J. W., Siezen R. J., Roebroek A. J., Ayoubi T. A., Huylebroeck D., Van de Ven W. J. Modulation of furin-mediated proprotein processing activity by site-directed mutagenesis. J Biol Chem. 1993 Oct 15;268(29):21826–21834. [PubMed] [Google Scholar]
  10. Davail S., Feller G., Narinx E., Gerday C. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41. J Biol Chem. 1994 Jul 1;269(26):17448–17453. [PubMed] [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Durham D. R. The elastolytic properties of subtilisin GX from alkalophilic Bacillus sp. strain 6644 provides a means of differentiation from other subtilisins. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1365–1370. doi: 10.1006/bbrc.1993.1975. [DOI] [PubMed] [Google Scholar]
  13. Freeman S. A., Peek K., Prescott M., Daniel R. Characterization of a chelator-resistant proteinase from Thermus strain Rt4A2. Biochem J. 1993 Oct 15;295(Pt 2):463–469. doi: 10.1042/bj2950463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gallagher T., Bryan P., Gilliland G. L. Calcium-independent subtilisin by design. Proteins. 1993 Jun;16(2):205–213. doi: 10.1002/prot.340160207. [DOI] [PubMed] [Google Scholar]
  15. Grøn H., Meldal M., Breddam K. Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching. Biochemistry. 1992 Jul 7;31(26):6011–6018. doi: 10.1021/bi00141a008. [DOI] [PubMed] [Google Scholar]
  16. Hazes B., Dijkstra B. W. Model building of disulfide bonds in proteins with known three-dimensional structure. Protein Eng. 1988 Jul;2(2):119–125. doi: 10.1093/protein/2.2.119. [DOI] [PubMed] [Google Scholar]
  17. Heinz D. W., Priestle J. P., Rahuel J., Wilson K. S., Grütter M. G. Refined crystal structures of subtilisin novo in complex with wild-type and two mutant eglins. Comparison with other serine proteinase inhibitor complexes. J Mol Biol. 1991 Jan 20;217(2):353–371. doi: 10.1016/0022-2836(91)90549-l. [DOI] [PubMed] [Google Scholar]
  18. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  19. Katz B., Kossiakoff A. A. Crystal structures of subtilisin BPN' variants containing disulfide bonds and cavities: concerted structural rearrangements induced by mutagenesis. Proteins. 1990;7(4):343–357. doi: 10.1002/prot.340070406. [DOI] [PubMed] [Google Scholar]
  20. Kwon S. T., Terada I., Matsuzawa H., Ohta T. Nucleotide sequence of the gene for aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1 and characteristics of the deduced primary structure of the enzyme. Eur J Biochem. 1988 May 2;173(3):491–497. doi: 10.1111/j.1432-1033.1988.tb14025.x. [DOI] [PubMed] [Google Scholar]
  21. Lilley G. G., Stewart D. J., Kortt A. A. Amino acid and DNA sequences of an extracellular basic protease of Dichelobacter nodosus show that it is a member of the subtilisin family of proteases. Eur J Biochem. 1992 Nov 15;210(1):13–21. doi: 10.1111/j.1432-1033.1992.tb17385.x. [DOI] [PubMed] [Google Scholar]
  22. Lipkind G., Gong Q., Steiner D. F. Molecular modeling of the substrate specificity of prohormone convertases SPC2 and SPC3. J Biol Chem. 1995 Jun 2;270(22):13277–13284. doi: 10.1074/jbc.270.22.13277. [DOI] [PubMed] [Google Scholar]
  23. Lo R. Y., Strathdee C. A., Shewen P. E., Cooney B. J. Molecular studies of Ssa1, a serotype-specific antigen of Pasteurella haemolytica A1. Infect Immun. 1991 Oct;59(10):3398–3406. doi: 10.1128/iai.59.10.3398-3406.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsumura M., Signor G., Matthews B. W. Substantial increase of protein stability by multiple disulphide bonds. Nature. 1989 Nov 16;342(6247):291–293. doi: 10.1038/342291a0. [DOI] [PubMed] [Google Scholar]
  25. McPhalen C. A., James M. N. Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo. Biochemistry. 1988 Aug 23;27(17):6582–6598. [PubMed] [Google Scholar]
  26. Meyer C., Bierbaum G., Heidrich C., Reis M., Süling J., Iglesias-Wind M. I., Kempter C., Molitor E., Sahl H. G. Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role of PepC in thioether formation. Eur J Biochem. 1995 Sep 1;232(2):478–489. doi: 10.1111/j.1432-1033.1995.tb20834.x. [DOI] [PubMed] [Google Scholar]
  27. Mitchinson C., Wells J. A. Protein engineering of disulfide bonds in subtilisin BPN'. Biochemistry. 1989 May 30;28(11):4807–4815. doi: 10.1021/bi00437a043. [DOI] [PubMed] [Google Scholar]
  28. Murphy J. M., Walton J. D. Three extracellular proteases from Cochliobolus carbonum: cloning and targeted disruption of ALP1. Mol Plant Microbe Interact. 1996 May;9(4):290–297. doi: 10.1094/mpmi-9-0290. [DOI] [PubMed] [Google Scholar]
  29. Pantoliano M. W., Ladner R. C., Bryan P. N., Rollence M. L., Wood J. F., Poulos T. L. Protein engineering of subtilisin BPN': enhanced stabilization through the introduction of two cysteines to form a disulfide bond. Biochemistry. 1987 Apr 21;26(8):2077–2082. doi: 10.1021/bi00382a002. [DOI] [PubMed] [Google Scholar]
  30. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Perona J. J., Craik C. S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 1995 Mar;4(3):337–360. doi: 10.1002/pro.5560040301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sahl H. G., Jack R. W., Bierbaum G. Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem. 1995 Jun 15;230(3):827–853. doi: 10.1111/j.1432-1033.1995.tb20627.x. [DOI] [PubMed] [Google Scholar]
  33. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  34. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  35. Schmidt B. F., Woodhouse L., Adams R. M., Ward T., Mainzer S. E., Lad P. J. Alkalophilic Bacillus sp. strain LG12 has a series of serine protease genes. Appl Environ Microbiol. 1995 Dec;61(12):4490–4493. doi: 10.1128/aem.61.12.4490-4493.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Segers R., Butt T. M., Keen J. N., Kerry B. R., Peberdy J. F. The subtilisins of the invertebrate mycopathogens Verticillium chlamydosporium and Metarhizium anisopliae are serologically and functionally related. FEMS Microbiol Lett. 1995 Mar 1;126(3):227–231. doi: 10.1111/j.1574-6968.1995.tb07423.x. [DOI] [PubMed] [Google Scholar]
  37. Shimogaki H., Takeuchi K., Nishino T., Ohdera M., Kudo T., Ohba K., Iwama M., Irie M. Purification and properties of a novel surface-active agent- and alkaline-resistant protease from Bacillus sp. Y. Agric Biol Chem. 1991 Sep;55(9):2251–2258. [PubMed] [Google Scholar]
  38. Siezen R. J., Bruinenberg P. G., Vos P., van Alen-Boerrigter I., Nijhuis M., Alting A. C., Exterkate F. A., de Vos W. M. Engineering of the substrate-binding region of the subtilisin-like, cell-envelope proteinase of Lactococcus lactis. Protein Eng. 1993 Nov;6(8):927–937. doi: 10.1093/protein/6.8.927. [DOI] [PubMed] [Google Scholar]
  39. Siezen R. J., Creemers J. W., Van de Ven W. J. Homology modelling of the catalytic domain of human furin. A model for the eukaryotic subtilisin-like proprotein convertases. Eur J Biochem. 1994 Jun 1;222(2):255–266. doi: 10.1111/j.1432-1033.1994.tb18864.x. [DOI] [PubMed] [Google Scholar]
  40. Siezen R. J., de Vos W. M., Leunissen J. A., Dijkstra B. W. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng. 1991 Oct;4(7):719–737. doi: 10.1093/protein/4.7.719. [DOI] [PubMed] [Google Scholar]
  41. Strongin A. Y., Izotova L. S., Abramov Z. T., Gorodetsky D. I., Ermakova L. M., Baratova L. A., Belyanova L. P., Stepanov V. M. Intracellular serine protease of Bacillus subtilis: sequence homology with extracellular subtilisins. J Bacteriol. 1978 Mar;133(3):1401–1411. doi: 10.1128/jb.133.3.1401-1411.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Takagi H., Takahashi T., Momose H., Inouye M., Maeda Y., Matsuzawa H., Ohta T. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J Biol Chem. 1990 Apr 25;265(12):6874–6878. [PubMed] [Google Scholar]
  43. Takeuchi Y., Satow Y., Nakamura K. T., Mitsui Y. Refined crystal structure of the complex of subtilisin BPN' and Streptomyces subtilisin inhibitor at 1.8 A resolution. J Mol Biol. 1991 Sep 5;221(1):309–325. [PubMed] [Google Scholar]
  44. Tsujibo H., Miyamoto K., Hasegawa T., Inamori Y. Amino acid compositions and partial sequences of two types of alkaline serine proteases from Nocardiopsis dassonvillei subsp. prasina OPC-210. Agric Biol Chem. 1990 Aug;54(8):2177–2179. [PubMed] [Google Scholar]
  45. Van de Ven W. J., Roebroek A. J., Van Duijnhoven H. L. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Crit Rev Oncog. 1993;4(2):115–136. [PubMed] [Google Scholar]
  46. Wells J. A., Powers D. B. In vivo formation and stability of engineered disulfide bonds in subtilisin. J Biol Chem. 1986 May 15;261(14):6564–6570. [PubMed] [Google Scholar]
  47. Zhou A., Paquet L., Mains R. E. Structural elements that direct specific processing of different mammalian subtilisin-like prohormone convertases. J Biol Chem. 1995 Sep 15;270(37):21509–21516. doi: 10.1074/jbc.270.37.21509. [DOI] [PubMed] [Google Scholar]
  48. van de Ven W. J., Voorberg J., Fontijn R., Pannekoek H., van den Ouweland A. M., van Duijnhoven H. L., Roebroek A. J., Siezen R. J. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes. Mol Biol Rep. 1990 Nov;14(4):265–275. doi: 10.1007/BF00429896. [DOI] [PubMed] [Google Scholar]
  49. van der Meer J. R., Rollema H. S., Siezen R. J., Beerthuyzen M. M., Kuipers O. P., de Vos W. M. Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J Biol Chem. 1994 Feb 4;269(5):3555–3562. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES