Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Mar;6(3):689–697. doi: 10.1002/pro.5560060318

Biosynthetic incorporation of tryptophan analogues into staphylococcal nuclease: effect of 5-hydroxytryptophan and 7-azatryptophan on structure and stability.

C Y Wong 1, M R Eftink 1
PMCID: PMC2143680  PMID: 9070451

Abstract

5-Hydroxytryptophan (5HW) and 7-azatryptophan (7AW) are analogue of tryptophan that potentially can be incorporated biosynthetically into proteins and used as spectroscopic probes for studying protein-DNA and protein-protein complexes. The utility of these probes will depend on the extent to which they can be incorporated and the demonstration that they cause minimal perturbation of a protein's structure and stability. To investigate these factors in a model protein, we have incorporated 5HW and 7AW biosynthetically into staphylococcal nuclease A, using a trp auxotroph Escherichia coli expression system containing the temperature-sensitive lambda cI repressor, Both tryptophan analogues are incorporated into the protein with good efficiency. From analysis of absorption spectra, we estimate approximately 95% incorporation of 5HW into position 140 of nuclease, and we estimate approximately 98% incorporation of 7AW, CD spectra of the nuclease variants are similar to that of the tryptophan-containing protein, indicating that the degree of secondary structure is not changed by the tryptophan analogues. Steady-state fluorescence data show emission maxima of 338 nm for 5HW-containing nuclease and 355 nm for 7AW-containing nuclease. Time-resolved fluorescence intensity and anisotropy measurements indicate that the incorporated 5HW residue, like tryptophan at position 140, has a dominant rotational correlation time that is approximately the value expected for global rotation of the protein. Guanidine-hydrochloride-induced unfolding studies show the unfolding transition to be two-state for 5HW-containing protein, with a free energy change for unfolding that is equal to that of the tryptophan-containing protein. In contrast, the guanidine-hydrochloride-induced unfolding of 7AW-containing nuclease appears to show a non-two-state transition, with the apparent stability of the protein being less than that of the tryptophan form.

Full Text

The Full Text of this article is available as a PDF (952.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brochon J. C., Wahl P., Auchet J. C. Fluorescence time-resolved spectroscopy and fluorescence anisotropy decay of the Staphylococcus aureus endonuclease. Eur J Biochem. 1974 Feb 1;41(3):577–583. doi: 10.1111/j.1432-1033.1974.tb03299.x. [DOI] [PubMed] [Google Scholar]
  2. Carra J. H., Anderson E. A., Privalov P. L. Three-state thermodynamic analysis of the denaturation of staphylococcal nuclease mutants. Biochemistry. 1994 Sep 6;33(35):10842–10850. doi: 10.1021/bi00201a035. [DOI] [PubMed] [Google Scholar]
  3. Cuatrecasas P., Fuchs S., Anfinsen C. B. Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus. J Biol Chem. 1967 Apr 10;242(7):1541–1547. [PubMed] [Google Scholar]
  4. Eftink M. R., Ghiron C. A. Frequency domain measurements of the fluorescence lifetime of ribonuclease T1. Biophys J. 1987 Sep;52(3):467–473. doi: 10.1016/S0006-3495(87)83235-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eftink M. R., Gryczynski I., Wiczk W., Laczko G., Lakowicz J. R. Effects of temperature on the fluorescence intensity and anisotropy decays of staphylococcal nuclease and the less stable nuclease-conA-SG28 mutant. Biochemistry. 1991 Sep 17;30(37):8945–8953. doi: 10.1021/bi00101a005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eftink M. R., Ionescu R., Ramsay G. D., Wong C. Y., Wu J. Q., Maki A. H. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of Staphylococcal nuclease and its 1-136 fragment. Biochemistry. 1996 Jun 18;35(24):8084–8094. doi: 10.1021/bi9530090. [DOI] [PubMed] [Google Scholar]
  7. Ellman J. A., Mendel D., Schultz P. G. Site-specific incorporation of novel backbone structures into proteins. Science. 1992 Jan 10;255(5041):197–200. doi: 10.1126/science.1553546. [DOI] [PubMed] [Google Scholar]
  8. Hogue C. W., Rasquinha I., Szabo A. G., MacManus J. P. A new intrinsic fluorescent probe for proteins. Biosynthetic incorporation of 5-hydroxytryptophan into oncomodulin. FEBS Lett. 1992 Oct 5;310(3):269–272. doi: 10.1016/0014-5793(92)81346-n. [DOI] [PubMed] [Google Scholar]
  9. Jackson D. Y., Burnier J., Quan C., Stanley M., Tom J., Wells J. A. A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science. 1994 Oct 14;266(5183):243–247. doi: 10.1126/science.7939659. [DOI] [PubMed] [Google Scholar]
  10. Judice J. K., Gamble T. R., Murphy E. C., de Vos A. M., Schultz P. G. Probing the mechanism of staphylococcal nuclease with unnatural amino acids: kinetic and structural studies. Science. 1993 Sep 17;261(5128):1578–1581. doi: 10.1126/science.8103944. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lange-Carter C. A., Johnson G. L. Assay of MEK kinases. Methods Enzymol. 1995;255:290–301. doi: 10.1016/s0076-6879(95)55032-1. [DOI] [PubMed] [Google Scholar]
  13. Laue T. M., Senear D. F., Eaton S., Ross J. B. 5-hydroxytryptophan as a new intrinsic probe for investigating protein-DNA interactions by analytical ultracentrifugation. Study of the effect of DNA on self-assembly of the bacteriophage lambda cI repressor. Biochemistry. 1993 Mar 16;32(10):2469–2472. doi: 10.1021/bi00061a003. [DOI] [PubMed] [Google Scholar]
  14. Laws W. R., Schwartz G. P., Rusinova E., Burke G. T., Chu Y. C., Katsoyannis P. G., Ross J. B. 5-Hydroxytryptophan: an absorption and fluorescence probe which is a conservative replacement for [A14 tyrosine] in insulin. J Protein Chem. 1995 May;14(4):225–232. doi: 10.1007/BF01886763. [DOI] [PubMed] [Google Scholar]
  15. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  16. Mendel D., Ellman J. A., Chang Z., Veenstra D. L., Kollman P. A., Schultz P. G. Probing protein stability with unnatural amino acids. Science. 1992 Jun 26;256(5065):1798–1802. doi: 10.1126/science.1615324. [DOI] [PubMed] [Google Scholar]
  17. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Noren C. J., Anthony-Cahill S. J., Griffith M. C., Schultz P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science. 1989 Apr 14;244(4901):182–188. doi: 10.1126/science.2649980. [DOI] [PubMed] [Google Scholar]
  19. Omenn G. S., Cuatrecasas P., Anfinsen C. B. Studies of the aromatic circular dichroism of Staphylococcal nuclease. Proc Natl Acad Sci U S A. 1969 Nov;64(3):923–930. doi: 10.1073/pnas.64.3.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  21. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Patterson T. A., Costantino N., Dasgupta S., Court D. L. Improved bacterial hosts for regulated expression of genes from lambda pL plasmid vectors. Gene. 1993 Sep 30;132(1):83–87. doi: 10.1016/0378-1119(93)90517-7. [DOI] [PubMed] [Google Scholar]
  23. Ramsay G. D., Eftink M. R. Analysis of multidimensional spectroscopic data to monitor unfolding of proteins. Methods Enzymol. 1994;240:615–645. doi: 10.1016/s0076-6879(94)40066-0. [DOI] [PubMed] [Google Scholar]
  24. Ramsay G., Ionescu R., Eftink M. R. Modified spectrophotometer for multi-dimensional circular dichroism/fluorescence data acquisition in titration experiments: application to the pH and guanidine-HCI induced unfolding of apomyoglobin. Biophys J. 1995 Aug;69(2):701–707. doi: 10.1016/S0006-3495(95)79945-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schlesinger S. The effect of amino acid analogues on alkaline phosphatase. Formation in Escherichia coli K-12. II. Replacement of tryptophan by azatryptophan and by tryptazan. J Biol Chem. 1968 Jul 25;243(14):3877–3883. [PubMed] [Google Scholar]
  26. Shortle D., Meeker A. K., Freire E. Stability mutants of staphylococcal nuclease: large compensating enthalpy-entropy changes for the reversible denaturation reaction. Biochemistry. 1988 Jun 28;27(13):4761–4768. doi: 10.1021/bi00413a027. [DOI] [PubMed] [Google Scholar]
  27. Shortle D., Meeker A. K. Residual structure in large fragments of staphylococcal nuclease: effects of amino acid substitutions. Biochemistry. 1989 Feb 7;28(3):936–944. doi: 10.1021/bi00429a003. [DOI] [PubMed] [Google Scholar]
  28. Shortle D. Staphylococcal nuclease: a showcase of m-value effects. Adv Protein Chem. 1995;46:217–247. doi: 10.1016/s0065-3233(08)60336-8. [DOI] [PubMed] [Google Scholar]
  29. Soumillion P., Jespers L., Vervoort J., Fastrez J. Biosynthetic incorporation of 7-azatryptophan into the phage lambda lysozyme: estimation of tryptophan accessibility, effect on enzymatic activity and protein stability. Protein Eng. 1995 May;8(5):451–456. doi: 10.1093/protein/8.5.451. [DOI] [PubMed] [Google Scholar]
  30. Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
  31. Valeur B., Weber G. Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands. Photochem Photobiol. 1977 May;25(5):441–444. doi: 10.1111/j.1751-1097.1977.tb09168.x. [DOI] [PubMed] [Google Scholar]
  32. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES