Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 May;6(5):1101–1109. doi: 10.1002/pro.5560060517

Hydrogen exchange: the modern legacy of Linderstrøm-Lang.

S W Englander 1, L Mayne 1, Y Bai 1, T R Sosnick 1
PMCID: PMC2143687  PMID: 9144782

Abstract

This discussion, prepared for the Protein Society's symposium honoring the 100th anniversary of Kaj Linderstrøm-Lang, shows how hydrogen exchange approaches initially conceived and implemented by Lang and his colleagues some 50 years ago are contributing to current progress in structural biology. Examples are chosen from the active protein folding field. Hydrogen exchange methods now make it possible to define the structure of protein folding intermediates in various contexts: as tenuous molten globule forms at equilibrium under destabilizing conditions, in kinetic intermediates that exist for less than one second, and as infinitesimally populated excited state forms under native conditions. More generally, similar methods now find broad application in studies of protein structure, energetics, and interactions. This article considers the rise of these capabilities from their inception at the Carlsberg Labs to their contemporary role as a significant tool of modern structural biology.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENSON E. E., LINDERSTROM-LANG K. Deuterium exchange between myoglobin and water. Biochim Biophys Acta. 1959 Apr;32:579–581. doi: 10.1016/0006-3002(59)90649-3. [DOI] [PubMed] [Google Scholar]
  2. BERGER A., LINDERSTROM-LANG K. Deuterium exchange of poly-DL-alanine in aqueous solution. Arch Biochem Biophys. 1957 Jul;69:106–118. doi: 10.1016/0003-9861(57)90478-2. [DOI] [PubMed] [Google Scholar]
  3. Bai Y., Englander S. W. Future directions in folding: the multi-state nature of protein structure. Proteins. 1996 Feb;24(2):145–151. doi: 10.1002/(SICI)1097-0134(199602)24:2<145::AID-PROT1>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  4. Barksdale A. D., Rosenberg A. Acquisition and interpretation of hydrogen exchange data from peptides, polymers, and proteins. Methods Biochem Anal. 1982;28:1–113. doi: 10.1002/9780470110485.ch1. [DOI] [PubMed] [Google Scholar]
  5. Chamberlain A. K., Handel T. M., Marqusee S. Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nat Struct Biol. 1996 Sep;3(9):782–787. doi: 10.1038/nsb0996-782. [DOI] [PubMed] [Google Scholar]
  6. Dabora J. M., Pelton J. G., Marqusee S. Structure of the acid state of Escherichia coli ribonuclease HI. Biochemistry. 1996 Sep 17;35(37):11951–11958. doi: 10.1021/bi9611671. [DOI] [PubMed] [Google Scholar]
  7. Englander J. J., Rogero J. R., Englander S. W. Protein hydrogen exchange studied by the fragment separation method. Anal Biochem. 1985 May 15;147(1):234–244. doi: 10.1016/0003-2697(85)90033-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Englander S. W., Mayne L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct. 1992;21:243–265. doi: 10.1146/annurev.bb.21.060192.001331. [DOI] [PubMed] [Google Scholar]
  9. Gallagher W., Tao F., Woodward C. Comparison of hydrogen exchange rates for bovine pancreatic trypsin inhibitor in crystals and in solution. Biochemistry. 1992 May 19;31(19):4673–4680. doi: 10.1021/bi00134a020. [DOI] [PubMed] [Google Scholar]
  10. Guéron M., Leroy J. L. Studies of base pair kinetics by NMR measurement of proton exchange. Methods Enzymol. 1995;261:383–413. doi: 10.1016/s0076-6879(95)61018-9. [DOI] [PubMed] [Google Scholar]
  11. HVIDT A., LINDERSTRØM-LANG K. Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions. Biochim Biophys Acta. 1954 Aug;14(4):574–575. doi: 10.1016/0006-3002(54)90241-3. [DOI] [PubMed] [Google Scholar]
  12. Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
  13. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  14. Jeng M. F., Englander S. W., Elöve G. A., Wand A. J., Roder H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry. 1990 Nov 20;29(46):10433–10437. doi: 10.1021/bi00498a001. [DOI] [PubMed] [Google Scholar]
  15. Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
  16. Jones D. N., Bycroft M., Lubienski M. J., Fersht A. R. Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange. FEBS Lett. 1993 Sep 27;331(1-2):165–172. doi: 10.1016/0014-5793(93)80319-p. [DOI] [PubMed] [Google Scholar]
  17. KRAUSE I. M., LINDSTROM-LANG K. Exchange of deuterium and 18O between water and other substances. II. Alternative-methods. C R Trav Lab Carlsberg Chim. 1955;29(22-23):367–384. [PubMed] [Google Scholar]
  18. Kim K. S., Woodward C. Protein internal flexibility and global stability: effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor. Biochemistry. 1993 Sep 21;32(37):9609–9613. doi: 10.1021/bi00088a013. [DOI] [PubMed] [Google Scholar]
  19. Kim P. S., Baldwin R. L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem. 1982;51:459–489. doi: 10.1146/annurev.bi.51.070182.002331. [DOI] [PubMed] [Google Scholar]
  20. Kuroda Y. Residual helical structure in the C-terminal fragment of cytochrome c. Biochemistry. 1993 Feb 9;32(5):1219–1224. doi: 10.1021/bi00056a004. [DOI] [PubMed] [Google Scholar]
  21. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  22. Matthews C. R. Pathways of protein folding. Annu Rev Biochem. 1993;62:653–683. doi: 10.1146/annurev.bi.62.070193.003253. [DOI] [PubMed] [Google Scholar]
  23. Mayne L., Paterson Y., Cerasoli D., Englander S. W. Effect of antibody binding on protein motions studied by hydrogen-exchange labeling and two-dimensional NMR. Biochemistry. 1992 Nov 10;31(44):10678–10685. doi: 10.1021/bi00159a006. [DOI] [PubMed] [Google Scholar]
  24. Mayo S. L., Baldwin R. L. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science. 1993 Nov 5;262(5135):873–876. doi: 10.1126/science.8235609. [DOI] [PubMed] [Google Scholar]
  25. Miranker A., Robinson C. V., Radford S. E., Dobson C. M. Investigation of protein folding by mass spectrometry. FASEB J. 1996 Jan;10(1):93–101. doi: 10.1096/fasebj.10.1.8566553. [DOI] [PubMed] [Google Scholar]
  26. Orban J., Alexander P., Bryan P. Hydrogen-deuterium exchange in the free and immunoglobulin G-bound protein G B-domain. Biochemistry. 1994 May 17;33(19):5702–5710. doi: 10.1021/bi00185a006. [DOI] [PubMed] [Google Scholar]
  27. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  28. Paterson Y., Englander S. W., Roder H. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science. 1990 Aug 17;249(4970):755–759. doi: 10.1126/science.1697101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ptitsyn O. B. Kinetic and equilibrium intermediates in protein folding. Protein Eng. 1994 May;7(5):593–596. doi: 10.1093/protein/7.5.593. [DOI] [PubMed] [Google Scholar]
  30. Ptitsyn O. B., Pain R. H., Semisotnov G. V., Zerovnik E., Razgulyaev O. I. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 1990 Mar 12;262(1):20–24. doi: 10.1016/0014-5793(90)80143-7. [DOI] [PubMed] [Google Scholar]
  31. Ptitsyn O. B. Structures of folding intermediates. Curr Opin Struct Biol. 1995 Feb;5(1):74–78. doi: 10.1016/0959-440x(95)80011-o. [DOI] [PubMed] [Google Scholar]
  32. Qian H., Mayo S. L., Morton A. Protein hydrogen exchange in denaturant: quantitative analysis by a two-process model. Biochemistry. 1994 Jul 12;33(27):8167–8171. doi: 10.1021/bi00193a001. [DOI] [PubMed] [Google Scholar]
  33. Raschke T. M., Marqusee S. The kinetic folding intermediate of ribonuclease H resembles the acid molten globule and partially unfolded molecules detected under native conditions. Nat Struct Biol. 1997 Apr;4(4):298–304. doi: 10.1038/nsb0497-298. [DOI] [PubMed] [Google Scholar]
  34. Robinson C. V., Gross M., Eyles S. J., Ewbank J. J., Mayhew M., Hartl F. U., Dobson C. M., Radford S. E. Conformation of GroEL-bound alpha-lactalbumin probed by mass spectrometry. Nature. 1994 Dec 15;372(6507):646–651. doi: 10.1038/372646a0. [DOI] [PubMed] [Google Scholar]
  35. Roder H., Elöve G. A., Englander S. W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature. 1988 Oct 20;335(6192):700–704. doi: 10.1038/335700a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rodgers M. E., Englander J. J., Englander S. W., Harrington W. F. Measurement of protein structure change in active muscle by hydrogen-tritium exchange. Biophys Chem. 1996 Apr 16;59(3):221–230. doi: 10.1016/0301-4622(95)00133-6. [DOI] [PubMed] [Google Scholar]
  37. Rogero J. R., Englander J. J., Englander S. W. Individual breathing reactions measured by functional labeling and hydrogen exchange methods. Methods Enzymol. 1986;131:508–517. doi: 10.1016/0076-6879(86)31053-x. [DOI] [PubMed] [Google Scholar]
  38. Rosa J. J., Richards F. M. An experimental procedure for increasing the structural resolution of chemical hydrogen-exchange measurements on proteins: application to ribonuclease S peptide. J Mol Biol. 1979 Sep 25;133(3):399–416. doi: 10.1016/0022-2836(79)90400-5. [DOI] [PubMed] [Google Scholar]
  39. Schellman J. A. A simple model for solvation in mixed solvents. Applications to the stabilization and destabilization of macromolecular structures. Biophys Chem. 1990 Aug 31;37(1-3):121–140. doi: 10.1016/0301-4622(90)88013-i. [DOI] [PubMed] [Google Scholar]
  40. Schellman J. A. Selective binding and solvent denaturation. Biopolymers. 1987 Apr;26(4):549–559. doi: 10.1002/bip.360260408. [DOI] [PubMed] [Google Scholar]
  41. Swint-Kruse L., Robertson A. D. Temperature and pH dependences of hydrogen exchange and global stability for ovomucoid third domain. Biochemistry. 1996 Jan 9;35(1):171–180. doi: 10.1021/bi9517603. [DOI] [PubMed] [Google Scholar]
  42. Thornton K., Gorenstein D. G. Structure of glucagon-like peptide (7-36) amide in a dodecylphosphocholine micelle as determined by 2D NMR. Biochemistry. 1994 Mar 29;33(12):3532–3539. doi: 10.1021/bi00178a009. [DOI] [PubMed] [Google Scholar]
  43. Tsuboi M., Nakanishi M. Overall and localized fluctuation in the structure of a protein molecule. Adv Biophys. 1979;12:101–130. [PubMed] [Google Scholar]
  44. Udgaonkar J. B., Baldwin R. L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature. 1988 Oct 20;335(6192):694–699. doi: 10.1038/335694a0. [DOI] [PubMed] [Google Scholar]
  45. Wagner G., Wüthrich K. Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance. J Mol Biol. 1982 Sep 15;160(2):343–361. doi: 10.1016/0022-2836(82)90180-2. [DOI] [PubMed] [Google Scholar]
  46. Werner M. H., Wemmer D. E. Identification of a protein-binding surface by differential amide hydrogen-exchange measurements. Application to Bowman-Birk serine-protease inhibitor. J Mol Biol. 1992 Jun 5;225(3):873–889. doi: 10.1016/0022-2836(92)90407-b. [DOI] [PubMed] [Google Scholar]
  47. Woodward C., Simon I., Tüchsen E. Hydrogen exchange and the dynamic structure of proteins. Mol Cell Biochem. 1982 Oct 29;48(3):135–160. doi: 10.1007/BF00421225. [DOI] [PubMed] [Google Scholar]
  48. Wu L. C., Laub P. B., Elöve G. A., Carey J., Roder H. A noncovalent peptide complex as a model for an early folding intermediate of cytochrome c. Biochemistry. 1993 Sep 28;32(38):10271–10276. doi: 10.1021/bi00089a050. [DOI] [PubMed] [Google Scholar]
  49. Zahn R., Spitzfaden C., Ottiger M., Wüthrich K., Plückthun A. Destabilization of the complete protein secondary structure on binding to the chaperone GroEL. Nature. 1994 Mar 17;368(6468):261–265. doi: 10.1038/368261a0. [DOI] [PubMed] [Google Scholar]
  50. Zhang Z., Post C. B., Smith D. L. Amide hydrogen exchange determined by mass spectrometry: application to rabbit muscle aldolase. Biochemistry. 1996 Jan 23;35(3):779–791. doi: 10.1021/bi952227q. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES