Abstract
A key step in plant photorespiration, the oxidation of glycolate to glyoxylate, is carried out by the peroxisomal flavoprotein glycolate oxidase (EC 1.1.3.15). The three-dimensional structure of this alpha/beta barrel protein has been refined to 2 A resolution (Lindqvist Y. 1989. J Mol Biol 209:151-166). FMN dependent glycolate oxidase is a member of the family of alpha-hydroxy acid oxidases. Here we describe the crystallization and structure determination of two inhibitor complexes of the enzyme, TKP (3-Decyl-2,5-dioxo-4-hydroxy-3-pyrroline) and TACA (4-Carboxy-5-(1-pentyl)hexylsulfanyl-1,2,3-triazole). The structure of the TACA complex has been refined to 2.6 A resolution and the TKP complex, solved with molecular replacement, to 2.2 A resolution. The Rfree for the TACA and TKP complexes are 24.2 and 25.1%, respectively. The overall structures are very similar to the unliganded holoenzyme, but a closer examination of the active site reveals differences in the positioning of the flavin isoalloxazine ring and a displaced flexible loop in the TKP complex. The two inhibitors differ in binding mode and hydrophobic interactions, and these differences are reflected by the very different Ki values for the inhibitors, 16 nM for TACA and 4.8 microM for TKP. Implications of the structures of these enzyme-inhibitor complexes for the model for substrate binding and catalysis proposed from the holo-enzyme structure are discussed.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
- Diêp Lê K. H., Lederer F. Amino acid sequence of long chain alpha-hydroxy acid oxidase from rat kidney, a member of the family of FMN-dependent alpha-hydroxy acid-oxidizing enzymes. J Biol Chem. 1991 Nov 5;266(31):20877–20881. [PubMed] [Google Scholar]
- Jayanthi S., Saravanan N., Varalakshmi P. Effect of DL alpha-lipoic acid in glyoxylate-induced acute lithiasis. Pharmacol Res. 1994 Oct-Nov;30(3):281–288. doi: 10.1016/1043-6618(94)80110-x. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Lederer F., Belmouden A., Gondry M. The chemical mechanism of flavoprotein-catalysed alpha-hydroxy acid dehydrogenation: a mutational analysis. Biochem Soc Trans. 1996 Feb;24(1):77–83. doi: 10.1042/bst0240077. [DOI] [PubMed] [Google Scholar]
- Lindqvist Y., Brändén C. I., Mathews F. S., Lederer F. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding. J Biol Chem. 1991 Feb 15;266(5):3198–3207. [PubMed] [Google Scholar]
- Lindqvist Y., Brändén C. I. Preliminary crystallographic data for glycolate oxidase from spinach. J Biol Chem. 1979 Aug 10;254(15):7403–7404. [PubMed] [Google Scholar]
- Lindqvist Y., Brändén C. I. The active site of spinach glycolate oxidase. J Biol Chem. 1989 Feb 25;264(6):3624–3628. [PubMed] [Google Scholar]
- Lindqvist Y. Refined structure of spinach glycolate oxidase at 2 A resolution. J Mol Biol. 1989 Sep 5;209(1):151–166. doi: 10.1016/0022-2836(89)90178-2. [DOI] [PubMed] [Google Scholar]
- Macheroux P., Kieweg V., Massey V., Söderlind E., Stenberg K., Lindqvist Y. Role of tyrosine 129 in the active site of spinach glycolate oxidase. Eur J Biochem. 1993 May 1;213(3):1047–1054. doi: 10.1111/j.1432-1033.1993.tb17852.x. [DOI] [PubMed] [Google Scholar]
- Macheroux P., Massey V., Thiele D. J., Volokita M. Expression of spinach glycolate oxidase in Saccharomyces cerevisiae: purification and characterization. Biochemistry. 1991 May 7;30(18):4612–4619. doi: 10.1021/bi00232a036. [DOI] [PubMed] [Google Scholar]
- Macheroux P., Mulrooney S. B., Williams C. H., Jr, Massey V. Direct expression of active spinach glycolate oxidase in Escherichia coli. Biochim Biophys Acta. 1992 Aug 17;1132(1):11–16. doi: 10.1016/0167-4781(92)90046-3. [DOI] [PubMed] [Google Scholar]
- Reid G. A., White S., Black M. T., Lederer F., Mathews F. S., Chapman S. K. Probing the active site of flavocytochrome b2 by site-directed mutagenesis. Eur J Biochem. 1988 Dec 15;178(2):329–333. doi: 10.1111/j.1432-1033.1988.tb14454.x. [DOI] [PubMed] [Google Scholar]
- Rooney C. S., Randall W. C., Streeter K. B., Ziegler C., Cragoe E. J., Jr, Schwam H., Michelson S. R., Williams H. W., Eichler E., Duggan D. E. Inhibitors of glycolic acid oxidase. 4-Substituted 3-hydroxy-1H-pyrrole-2,5-dione derivatives. J Med Chem. 1983 May;26(5):700–714. doi: 10.1021/jm00359a015. [DOI] [PubMed] [Google Scholar]
- Stenberg K., Clausen T., Lindqvist Y., Macheroux P. Involvement of Tyr24 and Trp108 in substrate binding and substrate specificity of glycolate oxidase. Eur J Biochem. 1995 Mar 1;228(2):408–416. [PubMed] [Google Scholar]
- Stenberg K., Lindqvist Y. High-level expression, purification, and crystallization of recombinant spinach glycolate oxidase in Escherichia coli. Protein Expr Purif. 1996 Nov;8(3):295–298. doi: 10.1006/prep.1996.0103. [DOI] [PubMed] [Google Scholar]
- Urban P., Lederer F. Intermolecular hydrogen transfer catalyzed by a flavodehydrogenase, bakers' yeast flavocytochrome b2. J Biol Chem. 1985 Sep 15;260(20):11115–11122. [PubMed] [Google Scholar]
- Williams H. W., Eichler E., Randall W. C., Rooney C. S., Cragoe E. J., Jr, Streeter K. B., Schwam H., Michelson S. R., Patchett A. A., Taub D. Inhibitors of glycolic acid oxidase. 4-substituted 2,4-dioxobutanoic acid derivatives. J Med Chem. 1983 Aug;26(8):1196–1200. doi: 10.1021/jm00362a020. [DOI] [PubMed] [Google Scholar]