Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 May;6(5):956–970. doi: 10.1002/pro.5560060502

Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN: application in predicting the three-dimensional structure of murine homeodomain Msx-1.

H Li 1, R Tejero 1, D Monleon 1, D Bassolino-Klimas 1, C Abate-Shen 1, R E Bruccoleri 1, G T Montelione 1
PMCID: PMC2143703  PMID: 9144767

Abstract

We have developed an automatic approach for homology modeling using restrained molecular dynamics and simulated annealing procedures, together with conformational search algorithms available in the molecular mechanics program CONGEN (Bruccoleri RE, Karplus M, 1987, Biopolymers 26:137-168). The accuracy of the method is validated by "predicting" structures of two homeodomain proteins with known three-dimensional structures, and then applied to predict the three-dimensional structure of the homeodomain of the murine Msx-1 transcription factor. Regions of the unknown protein structure that are highly homologous to the known template structure are constrained by "homology distance constraints," whereas the conformations of nonhomologous regions of the unknown protein are defined only by the potential energy function. A full energy function (excluding explicit solvent) is employed to ensure that the calculated structures have good conformational energies and are physically reasonable. As in NMR structure determinations, information on the consistency of the structure prediction is obtained by superposition of the resulting family of protein structures. In this paper, our homology modeling algorithm is described and compared with related homology modeling methods using spatial constraints derived from the structures of homologous proteins. The software is then used to predict the DNA-bound structures of three homeodomain proteins from the X-ray crystal structure of the engrailed homeodomain protein (Kissinger CR et al., 1990, Cell 63:579-590). The resulting backbone and side-chain conformations of the modeled yeast Mat alpha 2 and D. melanogaster Antennapedia homeodomains are excellent matches to the corresponding published X-ray crystal (Wolberger C et al., 1991, Cell 67:517-528) and NMR (Billeter M et al., 1993, J Mol Biol 234:1084-1097) structures, respectively. Examination of these structures of Msx-1 reveals a network of highly conserved surface salt bridges that are proposed to play a role in regulating protein-protein interactions of homeodomains in transcription complexes.

Full Text

The Full Text of this article is available as a PDF (8.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assa-Munt N., Mortishire-Smith R. J., Aurora R., Herr W., Wright P. E. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain. Cell. 1993 Apr 9;73(1):193–205. doi: 10.1016/0092-8674(93)90171-l. [DOI] [PubMed] [Google Scholar]
  2. Bajorath J., Stenkamp R., Aruffo A. Knowledge-based model building of proteins: concepts and examples. Protein Sci. 1993 Nov;2(11):1798–1810. doi: 10.1002/pro.5560021103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassolino-Klimas D., Tejero R., Krystek S. R., Metzler W. J., Montelione G. T., Bruccoleri R. E. Simulated annealing with restrained molecular dynamics using a flexible restraint potential: theory and evaluation with simulated NMR constraints. Protein Sci. 1996 Apr;5(4):593–603. doi: 10.1002/pro.5560050404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bazan J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6934–6938. doi: 10.1073/pnas.87.18.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Billeter M., Güntert P., Luginbühl P., Wüthrich K. Hydration and DNA recognition by homeodomains. Cell. 1996 Jun 28;85(7):1057–1065. doi: 10.1016/s0092-8674(00)81306-9. [DOI] [PubMed] [Google Scholar]
  6. Billeter M., Qian Y. Q., Otting G., Müller M., Gehring W., Wüthrich K. Determination of the nuclear magnetic resonance solution structure of an Antennapedia homeodomain-DNA complex. J Mol Biol. 1993 Dec 20;234(4):1084–1093. doi: 10.1006/jmbi.1993.1661. [DOI] [PubMed] [Google Scholar]
  7. Brocklehurst S. M., Perham R. N. Prediction of the three-dimensional structures of the biotinylated domain from yeast pyruvate carboxylase and of the lipoylated H-protein from the pea leaf glycine cleavage system: a new automated method for the prediction of protein tertiary structure. Protein Sci. 1993 Apr;2(4):626–639. doi: 10.1002/pro.5560020413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bruccoleri R. E., Haber E., Novotný J. Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature. 1988 Oct 6;335(6190):564–568. doi: 10.1038/335564a0. [DOI] [PubMed] [Google Scholar]
  9. Bruccoleri R. E., Karplus M. Conformational sampling using high-temperature molecular dynamics. Biopolymers. 1990 Dec;29(14):1847–1862. doi: 10.1002/bip.360291415. [DOI] [PubMed] [Google Scholar]
  10. Bruccoleri R. E., Karplus M. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers. 1987 Jan;26(1):137–168. doi: 10.1002/bip.360260114. [DOI] [PubMed] [Google Scholar]
  11. Catron K. M., Iler N., Abate C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol Cell Biol. 1993 Apr;13(4):2354–2365. doi: 10.1128/mcb.13.4.2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Catron K. M., Wang H., Hu G., Shen M. M., Abate-Shen C. Comparison of MSX-1 and MSX-2 suggests a molecular basis for functional redundancy. Mech Dev. 1996 Apr;55(2):185–199. doi: 10.1016/0925-4773(96)00503-5. [DOI] [PubMed] [Google Scholar]
  13. Catron K. M., Zhang H., Marshall S. C., Inostroza J. A., Wilson J. M., Abate C. Transcriptional repression by Msx-1 does not require homeodomain DNA-binding sites. Mol Cell Biol. 1995 Feb;15(2):861–871. doi: 10.1128/mcb.15.2.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ceska T. A., Lamers M., Monaci P., Nicosia A., Cortese R., Suck D. The X-ray structure of an atypical homeodomain present in the rat liver transcription factor LFB1/HNF1 and implications for DNA binding. EMBO J. 1993 May;12(5):1805–1810. doi: 10.2210/pdb1lfb/pdb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chothia C., Lesk A. M., Levitt M., Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure. Science. 1986 Aug 15;233(4765):755–758. doi: 10.1126/science.3090684. [DOI] [PubMed] [Google Scholar]
  16. Claessens M., Van Cutsem E., Lasters I., Wodak S. Modelling the polypeptide backbone with 'spare parts' from known protein structures. Protein Eng. 1989 Jan;2(5):335–345. doi: 10.1093/protein/2.5.335. [DOI] [PubMed] [Google Scholar]
  17. Dessain S., Gross C. T., Kuziora M. A., McGinnis W. Antp-type homeodomains have distinct DNA binding specificities that correlate with their different regulatory functions in embryos. EMBO J. 1992 Mar;11(3):991–1002. doi: 10.1002/j.1460-2075.1992.tb05138.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dubnau J., Struhl G. RNA recognition and translational regulation by a homeodomain protein. Nature. 1996 Feb 22;379(6567):694–699. doi: 10.1038/379694a0. [DOI] [PubMed] [Google Scholar]
  19. Ekker S. C., von Kessler D. P., Beachy P. A. Differential DNA sequence recognition is a determinant of specificity in homeotic gene action. EMBO J. 1992 Nov;11(11):4059–4072. doi: 10.1002/j.1460-2075.1992.tb05499.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Engh R. A., Wright H. T., Huber R. Modeling the intact form of the alpha 1-proteinase inhibitor. Protein Eng. 1990 May;3(6):469–477. doi: 10.1093/protein/3.6.469. [DOI] [PubMed] [Google Scholar]
  21. Fogolari F., Esposito G., Viglino P., Damante G., Pastore A. Homology model building of the thyroid transcription factor 1 homeodomain. Protein Eng. 1993 Jul;6(5):513–519. doi: 10.1093/protein/6.5.513. [DOI] [PubMed] [Google Scholar]
  22. Fujiyoshi-Yoneda T., Yoneda S., Kitamura K., Amisaki T., Ikeda K., Inoue M., Ishida T. Adaptability of restrained molecular dynamics for tertiary structure prediction: application to Crotalus atrox venom phospholipase A2. Protein Eng. 1991 Apr;4(4):443–450. doi: 10.1093/protein/4.4.443. [DOI] [PubMed] [Google Scholar]
  23. Gehring W. J. Homeo boxes in the study of development. Science. 1987 Jun 5;236(4806):1245–1252. doi: 10.1126/science.2884726. [DOI] [PubMed] [Google Scholar]
  24. Gehring W. J., Qian Y. Q., Billeter M., Furukubo-Tokunaga K., Schier A. F., Resendez-Perez D., Affolter M., Otting G., Wüthrich K. Homeodomain-DNA recognition. Cell. 1994 Jul 29;78(2):211–223. doi: 10.1016/0092-8674(94)90292-5. [DOI] [PubMed] [Google Scholar]
  25. Greer J. Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins. 1990;7(4):317–334. doi: 10.1002/prot.340070404. [DOI] [PubMed] [Google Scholar]
  26. Greer J. Model structure for the inflammatory protein C5a. Science. 1985 May 31;228(4703):1055–1060. doi: 10.1126/science.3992245. [DOI] [PubMed] [Google Scholar]
  27. Hyberts S. G., Goldberg M. S., Havel T. F., Wagner G. The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. 1992 Jun;1(6):736–751. doi: 10.1002/pro.5560010606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Isaac V. E., Sciavolino P., Abate C. Multiple amino acids determine the DNA binding specificity of the Msx-1 homeodomain. Biochemistry. 1995 May 30;34(21):7127–7134. doi: 10.1021/bi00021a026. [DOI] [PubMed] [Google Scholar]
  29. Kessel M., Gruss P. Murine developmental control genes. Science. 1990 Jul 27;249(4967):374–379. doi: 10.1126/science.1974085. [DOI] [PubMed] [Google Scholar]
  30. Kissinger C. R., Liu B. S., Martin-Blanco E., Kornberg T. B., Pabo C. O. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. Cell. 1990 Nov 2;63(3):579–590. doi: 10.1016/0092-8674(90)90453-l. [DOI] [PubMed] [Google Scholar]
  31. Kornberg T. B. Understanding the homeodomain. J Biol Chem. 1993 Dec 25;268(36):26813–26816. [PubMed] [Google Scholar]
  32. Krumlauf R. Hox genes in vertebrate development. Cell. 1994 Jul 29;78(2):191–201. doi: 10.1016/0092-8674(94)90290-9. [DOI] [PubMed] [Google Scholar]
  33. Laughon A. DNA binding specificity of homeodomains. Biochemistry. 1991 Dec 3;30(48):11357–11367. doi: 10.1021/bi00112a001. [DOI] [PubMed] [Google Scholar]
  34. Leiting B., De Francesco R., Tomei L., Cortese R., Otting G., Wüthrich K. The three-dimensional NMR-solution structure of the polypeptide fragment 195-286 of the LFB1/HNF1 transcription factor from rat liver comprises a nonclassical homeodomain. EMBO J. 1993 May;12(5):1797–1803. doi: 10.1002/j.1460-2075.1993.tb05827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Levitt M. Accurate modeling of protein conformation by automatic segment matching. J Mol Biol. 1992 Jul 20;226(2):507–533. doi: 10.1016/0022-2836(92)90964-l. [DOI] [PubMed] [Google Scholar]
  36. Lewis P. N., Momany F. A., Scheraga H. A. Chain reversals in proteins. Biochim Biophys Acta. 1973 Apr 20;303(2):211–229. doi: 10.1016/0005-2795(73)90350-4. [DOI] [PubMed] [Google Scholar]
  37. Li T., Stark M. R., Johnson A. D., Wolberger C. Crystal structure of the MATa1/MAT alpha 2 homeodomain heterodimer bound to DNA. Science. 1995 Oct 13;270(5234):262–269. doi: 10.1126/science.270.5234.262. [DOI] [PubMed] [Google Scholar]
  38. Odenwald W. F., Garbern J., Arnheiter H., Tournier-Lasserve E., Lazzarini R. A. The Hox-1.3 homeo box protein is a sequence-specific DNA-binding phosphoprotein. Genes Dev. 1989 Feb;3(2):158–172. doi: 10.1101/gad.3.2.158. [DOI] [PubMed] [Google Scholar]
  39. Otting G., Qian Y. Q., Müller M., Affolter M., Gehring W., Wüthrich K. Secondary structure determination for the Antennapedia homeodomain by nuclear magnetic resonance and evidence for a helix-turn-helix motif. EMBO J. 1988 Dec 20;7(13):4305–4309. doi: 10.1002/j.1460-2075.1988.tb03329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Palmer K. A., Scheraga H. A., Riordan J. F., Vallee B. L. A preliminary three-dimensional structure of angiogenin. Proc Natl Acad Sci U S A. 1986 Apr;83(7):1965–1969. doi: 10.1073/pnas.83.7.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Phillips C. L., Vershon A. K., Johnson A. D., Dahlquist F. W. Secondary structure of the homeo domain of yeast alpha 2 repressor determined by NMR spectroscopy. Genes Dev. 1991 May;5(5):764–772. doi: 10.1101/gad.5.5.764. [DOI] [PubMed] [Google Scholar]
  42. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  43. Qian Y. Q., Billeter M., Otting G., Müller M., Gehring W. J., Wüthrich K. The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors. Cell. 1989 Nov 3;59(3):573–580. doi: 10.1016/0092-8674(89)90040-8. [DOI] [PubMed] [Google Scholar]
  44. Qian Y. Q., Otting G., Billeter M., Müller M., Gehring W., Wüthrich K. Nuclear magnetic resonance spectroscopy of a DNA complex with the uniformly 13C-labeled Antennapedia homeodomain and structure determination of the DNA-bound homeodomain. J Mol Biol. 1993 Dec 20;234(4):1070–1083. doi: 10.1006/jmbi.1993.1660. [DOI] [PubMed] [Google Scholar]
  45. Qian Y. Q., Resendez-Perez D., Gehring W. J., Wüthrich K. The des(1-6)antennapedia homeodomain: comparison of the NMR solution structure and the DNA-binding affinity with the intact Antennapedia homeodomain. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4091–4095. doi: 10.1073/pnas.91.9.4091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rivera-Pomar R., Niessing D., Schmidt-Ott U., Gehring W. J., Jäckle H. RNA binding and translational suppression by bicoid. Nature. 1996 Feb 22;379(6567):746–749. doi: 10.1038/379746a0. [DOI] [PubMed] [Google Scholar]
  47. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  48. Scheraga H. A. Recent progress in the theoretical treatment of protein folding. Biopolymers. 1983 Jan;22(1):1–14. doi: 10.1002/bip.360220104. [DOI] [PubMed] [Google Scholar]
  49. Schneuwly S., Kuroiwa A., Baumgartner P., Gehring W. J. Structural organization and sequence of the homeotic gene Antennapedia of Drosophila melanogaster. EMBO J. 1986 Apr;5(4):733–739. doi: 10.1002/j.1460-2075.1986.tb04275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Scott M. P., Tamkun J. W., Hartzell G. W., 3rd The structure and function of the homeodomain. Biochim Biophys Acta. 1989 Jul 28;989(1):25–48. doi: 10.1016/0304-419x(89)90033-4. [DOI] [PubMed] [Google Scholar]
  51. Shang Z., Isaac V. E., Li H., Patel L., Catron K. M., Curran T., Montelione G. T., Abate C. Design of a "minimAl" homeodomain: the N-terminal arm modulates DNA binding affinity and stabilizes homeodomain structure. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8373–8377. doi: 10.1073/pnas.91.18.8373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sivaraja M., Botfield M. C., Mueller M., Jancso A., Weiss M. A. Solution structure of a POU-specific homeodomain: 3D-NMR studies of human B-cell transcription factor Oct-2. Biochemistry. 1994 Aug 23;33(33):9845–9855. doi: 10.1021/bi00199a005. [DOI] [PubMed] [Google Scholar]
  53. Snow M. E. A novel parameterization scheme for energy equations and its use to calculate the structure of protein molecules. Proteins. 1993 Feb;15(2):183–190. doi: 10.1002/prot.340150208. [DOI] [PubMed] [Google Scholar]
  54. Song K., Wang Y., Sassoon D. Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature. 1992 Dec 3;360(6403):477–481. doi: 10.1038/360477a0. [DOI] [PubMed] [Google Scholar]
  55. Srinivasan S., March C. J., Sudarsanam S. An automated method for modeling proteins on known templates using distance geometry. Protein Sci. 1993 Feb;2(2):277–289. doi: 10.1002/pro.5560020216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sudarsanam S., March C. J., Srinivasan S. Homology modeling of divergent proteins. J Mol Biol. 1994 Aug 12;241(2):143–149. doi: 10.1006/jmbi.1994.1484. [DOI] [PubMed] [Google Scholar]
  57. Tejero R., Bassolino-Klimas D., Bruccoleri R. E., Montelione G. T. Simulated annealing with restrained molecular dynamics using CONGEN: energy refinement of the NMR solution structures of epidermal and type-alpha transforming growth factors. Protein Sci. 1996 Apr;5(4):578–592. doi: 10.1002/pro.5560050403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wang B. B., Müller-Immergluck M. M., Austin J., Robinson N. T., Chisholm A., Kenyon C. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell. 1993 Jul 16;74(1):29–42. doi: 10.1016/0092-8674(93)90292-x. [DOI] [PubMed] [Google Scholar]
  59. Wolberger C. Homeodomain interactions. Curr Opin Struct Biol. 1996 Feb;6(1):62–68. doi: 10.1016/s0959-440x(96)80096-0. [DOI] [PubMed] [Google Scholar]
  60. Wolberger C., Vershon A. K., Liu B., Johnson A. D., Pabo C. O. Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell. 1991 Nov 1;67(3):517–528. doi: 10.1016/0092-8674(91)90526-5. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES